Автоматический регулятор вентилятора охлаждения радиатора. Схема регулирования включения вентиляторов охлаждения

Чтобы избавиться от монотонного надоедливого шума вентилятора, когда нет острой необходимости в его постоянной работе, достаточно смастерить небольшую схему на основе ШИМ.

ШИМ – широтно-импульсная модуляция, часто используется в бытовой технике для управления различными двигателями постоянного тока. На его основе можно легко построить управление оборотами любого вентилятора, в том числе и автомобильного.

В качестве генератора импульсов будем использовать низкочастотный генератор, построенный на базе таймера NE555. Принцип действия простой генератор управляет мощным полевым транзистором, который управляет подачей питания на вентилятор, тем самым задает частоту вращения вентилятора необходимой частоты. Частота генератора задается переменным резистором, изменяя значение его сопротивления, может установить необходимую нам частоту работы вентилятора.

В качестве полевого транзистора могут быть использованы IRFZ24, IRFZ40, IRFZ46 в принципе выбор очень велик, особых требований к нему не предъявляется, тем более что он работает на низкой частоте.

Полевой транзистор, желательно установить на теплоотвод, в качестве радиатора может служить и кузов автомобиля, однако в этом случае, необходимо обеспечить отсутствие электрического контакта между корпусом транзистора и кузова автомобиля. Это можно сделать с помощью слюдяной прокладки.

С номиналами переменного резистора можете поэкспериментировать, в данном случае использовался переменник с диапазоном сопротивлений от 4,7 кОм до 20 кОм, мощности резистора должна составлять не менее 1 Вт, если возьмете меньше, может погореть.

Все конструкция умещается в спичечный коробок, можете сделать ее просто навесным монтажом или на макетной плате. Конденсатор полярный, поэтому будьте аккуратней перед установкой не попутайте полярность.

Решил рассказать об одной своей давней микроконтроллерной разработке (2006 год), сделанной для плавного управления электровентилятором охлаждения двигателей переднеприводных моделей ВАЗа.

Надо сказать, что на тот момент уже существовало немало разнообразных решений - от чисто аналоговых до микроконтроллерных, с той или иной степенью совершенства выполняющих нужную функцию. Одним из них был контроллер вентилятора компании Силычъ (то, что сейчас выглядит вот так , известной среди интересующихся своим автоматическим регулятором опережения зажигания, программно детектирующим детонационные стуки двигателя. Я некоторое время следил за форумом изготовителя этих устройств, пытаясь определить, чтов устройстве получилось хорошо, а что - не очень, и в результате решил разработать свое.

По задумке, в отличие от существующих на то время решений, новый девайс должен был a) помещаться в корпус обычного автомобильного реле;
б) не требовать изменений в штатной проводке автомобиля; в) не иметь регулировочных элементов; г) надежно и устойчиво работать в реальных условиях эксплуатации.

История появления девайса и алгоритм работы первой версии обсуждалась - для тех, кто не хочет кликать, опишу ключевые вещи инлайн:

1. Алгоритм работы устройства предполагался следующий: измерялось напряжение на штатном датчике температуры двигателя; по достижении нижней пороговой температуры вентилятор начинал крутится на минимальных оборотах, и в случае дальнейшего роста линейно увеличивал скорость вращения вплоть до 100% в тот момент, когда по мнению ЭСУД (контроллера управления двигателем), пора бы включать вентилятор на полную мощность.
То есть, величина температуры, соответствующая 100% включению могла быть получена при первом включении устройства, т.к. оно имеет вход, соответствующий выводу обмотки штатного реле.
Нижний порог в первой версии нужно было каким-то образом установить, проведя таким образом через две точки линейную характеристику регулирования.

0. При токах порядка 20А очевидно, что для плавного регулирования применяется ШИМ, а в качестве ключевого элемента - мощный полевик.

1. Размещение устройства в корпусе обычного реле означает практическое отсутствие радиатора теплоотвода. А это в свою очередь накладывает жесткие требования к рассеиваемой ключевым элементом мощности в статическом (сопротивление канала) и динамическом (скорость переключения) режимах - исходя из теплового сопротивления кристалл-корпус она не должна превышать 1 Вт ни при каких условиях

2. Решением для п.1 может являться либо применение драйвера полевика, либо работа на низкой частоте ШИМ.
В отличие от аналогов, из соображений компактности и помехозащищенности был выбран вариант с низкой частотой ШИМ - всего 200 Гц.

4. Программирование порога включения устройства должно быть либо очень простым, либо быть полностью автоматическим. Изначально в устройстве был установлен геркон, поднесением магнита к которому сквозь корпус программировался нижний порог (значение естественно, запоминалось в EEPROM). Верхний порог устанавливался сам в момент первого импульса от контроллера ЭСУД.
В дальнейшем я придумал и реализовал алгоритм полностью автоматической установки порогов, основанный на нахождении термостабильной точки двигателя (точки срабатывания термостата) в условиях отсутствия насыщения по теплопередаче радиатор-воздух.

5. Устройство должно предоставлять диагностику пользователю. Для этого был добавлен светодиод, который промаргивал в двоичном коде два байта - текущий код АЦП и слово флагов состояния.

Устройство было собрано частично навесным монтажом прямо на выводах бывшего реле, частично на подвернувшейся откуда-то печатной платке.
Силовой MOSFET выводом стока был припаян прямо к ламелю вывода реле, что увеличило запас по рассеиваемой мощности. Устройство без глюков проработало на ВАЗ-2112 c 2006 по 2010 год, когда я его снял перед продажей, и побывало не только в холодном питерском климате, но и на горных крымских дорогах (да еще на машине в наддувном варианте - стоял у меня на впуске приводной компрессор), несмотря на монтаж уровня прототипа и контроллер в панельке.

Вот оригинальная схема (рисовал только на бумаге):

А это вид устройства изнутри:

Устройство было повторено несколькими людьми, один из них (офф-роудер Геннадий Оломуцкий из Киева) применил его на УАЗе, нарисовав схему в sPlan и разведя печатную плату - в его варианте это выглядит так:

А вот кусок из переписки с одним из повторивших этот девайс - в нем впервые детально выписан алгоритм (!) - до этого писал прямо из мозга в ассемблер:
Теперь идея и реализация собственно алгоритма автоустановки (все шаги ниже соответствуют неустановленным порогам):

1. Ждем сигнала включения вентилятора от ЭСУД (либо от датчика температуры в радиаторе в варианте Геннадия)
2. Запоминаем температуру в момент появления сигнала как T1 (реально запоминается код канала АЦП оцифровки сигнала датчика - назовем его C1)
3. Включаем вентилятор на 100%. Ставим флаг «режим автоустановки активен (бит 3)»
4. Через 3 секунды считываем код АЦП (назовем его C1"). Это действие нужно для того, чтобы определить величину компенсации значения температуры из-за влияния тока, протекающего через вентилятор, и вызванного им падения напряжения в измерительной цепи, на оцифрованное значение температуры. Реально за 3 секунды мотор не успевает охладиться, зато вентилятор стартует и выходит на номинальный ток.
5. Вычисляем коррекцию АЦП для 100% мощности вентилятора (назовем ее K100 = C1 - C1"). Запоминаем К100.
6. Ждем снятия сигнала включения вентилятора от ЭСУД (либо отключения датчика в радиаторе).
7. Плавно снижаем мощность с 75% до 12% примерно на 1.5% в секунду.
8. Выключаем вентилятор, ждем 60 секунд.
9. Запоминаем температуру как T2 (код АЦП С2).
10. Корректируем нижний порог (увеличиваем на 1/8 разницы между верхним и нижним), для того, чтобы он был выше термостабильной точки термостата. T2 = T2 + (T1 - T2) / 8. В кодах АЦП это C2 = C2 - (C2 - C1) / 8, т.к. напряжение на датчике с ростом температуры падает.
11. Сохраняем C1, C2, K100 во внутреннем EEPROM реле.
12. Устанавливаем флаг «пороги установлены» (бит 5), снимаем флаг «режим автоустановки активен», выходим из режима автоустановки в рабочий режим

Идея алгоритма в том, что он продувает радиатор до термостабильной точки термостата, но дует не сильно, чтобы не остужать двигатель прямым охлаждением блока и головки. Затем вентилятор выключается и реле дает мотору чуть нагреться - таким образом мы автоматически получаем точку для начала работы вентилятора.

Во время автоустановки реле воспринимает сигнал с геркона в течение шагов 7 и 8 - поднесение магнита к реле в эти моменты вызывает последовательность шагов 9, 11, 12. Коррекция порога на шаге 10 при этом не производится).

Если во время автоустановки нарушились некоторые ожидаемые реле условия, устанавливается флаг «ошибка автоконфигурации (бит 4)» и реле выходит из режима автоустановки. Чтобы реле опять смогло войти в этот режим по условию шага 1, надо выключить и включить питание реле.

Ошибки ловятся такие:
Шаг 2 - значение АЦП вне диапазона (слишком низкое или высокое). Диапазон автоконфигурации по коду АЦП 248..24 (11111000...00011000). В этом случае реле просто не входит в режим автоконфигурации без установки флага ошибки.
Шаг 4 - в течение времени ожидания 3 секунд обнаружено снятие внешнего сигнала включения вентилятора.
Шаг 7 - во время снижения оборотов обнаружен активный внешний сигнал включения вентилятора Шаг 8 - во время ожидания обнаружен активный внешний сигнал включения вентилятора Шаг 11 - установленные пороги вне диапазона 248..24, либо разница C2 - C1 < 4 (то есть они слишком близко друг к другу, либо по какой-то причине C2 > C1 - например, когда вентилятор на самом деле не срабатывает, и температура продолжает расти)

Теперь рабочий режим:

Расчет требуемой мощности (Preq)
1. Если внешний сигнал активен - Preq = 100% 2. Если неактивен, то смотрится текущий код АЦП © и соответствующая ему температура T:
T < T2 (C > C2): Preq = 0%
T > T1 (C < C1): Preq = 100%
T2 <= T <= T1 (C2 >= C >= C1): Preq = Pstart + (100% - Pstart) * (C2 - C) / (C2 - C1), где Pstart = начальная мощность (12%)

При этом, требуемая мощность не сразу подается на вентилятор, а проходит через алгоритм плавного разгона и органичения частоты пуска/останова вентилятора.
Этот алгоритм работает только в рабочем режиме и при отсутствии внешнего сигнала включения:
Пусть Pcurr - текущая мощность вентилятора
1. Если Pcurr > 0 и Preq = 0, либо Pcurr = 0 и Preq > 0 - то есть требуется запуск остановленного или останов работающего вентилятора, то:
- Смотрится время находжения вентилятора в данном состоянии (запущен или остановлен). Если время меньше порога - состояние вентилятора не меняется.
- При этом, если Pcurr > Pstart и Preq = 0, то на остаток времени запущенного состояния устанавливается Pcurr = Pstart (то есть вентилятор крутится на минимальных оборотах) 2. Если п.1 не выполняется, либо время нахождения в состоянии прошло, то:
- Если Preq < Pcurr, то устанавливается Pcurr = Preq (то изменение скорости вращения в сторону снижения происходит сразу, как рассчитано новое значение)
- Если Preq > Pcurr, то набор скорости вращения ограничивается сверху величиной примерно 1.5% в секунду (кроме случая, когда включение вентилятора запрашивается внешним сигналом) - то есть если Preq - Pcurr > Pdelta, то Pcurr = Pcurr + Pdelta, иначе Pcurr = Preq

При расчете мощности используется усредненное значение кода текущей температуры С (см. Расчет требуемой мощности), получаемое средним арифметическим последних 8 значений Сm1, Cm2, Cm3… Cm8. Усреднение происходит методом «скользящего окна» - то есть помещение нового значения в буфер из 8 значений выталкивает наиболее старое и вызывает пересчет среднеарифметического С. Цикл АЦП (и пересчет среднего) происходит каждые 640 мс.
«Сырое» (считанное из АЦП) значение Cadc, прежде чем попадет в буфер подсчета, участвует в следующем алгоритме:
1. Проверяется, что Cadc > Cdisc, где Cdics - макс. Значение АЦП для неподключенного измерительного вывода.
2. Если Cadc > Cdisc, то выставляется флаг «датчик не подключен (бит 6)», значение не попадает в буфер 8 последних значений, и пересчет среднего не выполняется.
3. Если Cadc >= Cdisc - то есть датчик подключен, то Сadc корректируется на определенную величину в зависимости от текущей мощности вентилятора и величины коррекции для 100% мощности (см. шаг 4 алгоритма автоустановки): Cadc = Cadc + Кcurr, где Кcurr = К100 * (Pcurr / 100%). Если при этом Кcurr > 0, то устанавливается флаг «значение АЦП скорректировано (бит 7)». Алгоритм коррекции работает только в рабочем режиме и не работает в режиме автоконфигурации.
4. Выполняется ограничение отрицательной динамики Cadc, чтобы подавить резкие снижения С из-за импульсной нагрузки в общих с датчиком температуры цепях питания автомобиля: Если C - Cadc > Сdelta, то Cadc = C - Cdelta. Ограничение не работает в течение первых 15 секунд после включения зажигания, для того, чтобы в буфере значений быстро сформировались правильные значения Cm1, Cm2...Cm8.
5. Скорректированное по мощности и динамике значение Cadc заталкивается в буфер значений для усреднения как Cm1..Cm8 в зависимости от текущего значения указателя головы буфера (буфер циклический, указатель головы принимает значения от 1 до 8).

Теперь про диагностику светодиодом:

Первый байт - это «сырой» код АЦП (в ранних версиях здесь индицировалось среднее значение C) Второй байт - слово состояния Между первым и вторым байтом пауза порядка 1.5 секунд.
Между циклами индикации пауза 3-4 секунды.
Байты индицируются побитно, начиная со старшего (бит 7, бит 6,… бит 0).
Длинная вспышка соответствует биту, установленному в «1», короткая - в «0».

Расшифровка слова состояния:
Бит 7 - значение АЦП откорректировано по текущей мощности вентилятора
Бит 6 - датчик температуры не подключен
Бит 5 - пороги установлены
Бит 4 - ошибка установки порогов
Бит 3 - режим автоконфигурации активен
Бит 2 - внутренний сброс процессора из-за зависания - нештатная ситуация
Бит 1 - внешний сигнал включения вентилятора активен
Бит 0 - режим продувки при остановке двигателя активен

Когда я описал алгоритм, то удивился как его удалось впихнуть в 1024 слова программной памяти tiny15. Однако, со скрипом, но поместился! ЕМНИП, оставалось всего пару десятков свободных ячеек. Вот что такое сила Ассемблера:)

Почему быстрый старт вентилятора охлаждения неприемлем для автомобиля? Тут несколько ответов:

1. На бортовую сеть идет большая нагрузка (это проводка, аккумулятор, генератор);
2. Помимо предыдущего идет и большая физическая нагрузка на крепления вентилятора и его подшипник;
3. Приходится использовать необоснованно большой предохранитель, так как пусковой ток может составлять до 30А.

Теперь определимся с задачами, которые мы поставим перед собой:

1. Главная наша задача – создать, так сказать, соф-старт.
2. Для этого использовать только штатную проводку.
3. Ограничится уже имеющимися кнопками.
4. Изначально автомобиль не обладал реле включения вентилятора, поэтому исправим это.

Как устроено представленное устройство? На самом деле, это ШИМ генератор импульсов, который запускается и начинает генерацию импульсов постоянной частоты на третий выход с изменяющейся по времени шириной следования импульса.

Время ширины задается емкостью конденсатора С3. Эти импульсы следуют до драйвера полевого транзистора, под управлением которого находится мощность нагрузки выхода устройства. Диод, который установлен на выходе, служит для того, чтобы погасить обратные неприемлемые выбросы электродвигателя.

Для диода была использована диодная сборка Шотки с общим катодом. Полевик использован Р-канальный, по причине того, что он должен регулировать положительное напряжение. Если бы использовался N-канальный, то потребовалась бы переработка всей проводки, которая связана с охлаждением двигателя, а в наши задачи это не входит.

В представленном устройстве часть элементов выполнена навесными, а другая – прикреплена на печатную плату.

Рисовка карты производилась в ЛУТе, а травка – хлорным железом.

Сначала нужно достать реле, разобрать его и извлечь все внутренности, оставив только клеммы.



Отрезав все ненужное, приступим к навесному монтажу.

Навесной у нас будет вся правая часть схемы, то есть все, что выходит с 3 ножки NE555. Если паять это все на плате, то размеров платы вообще не хватит.


Можно приступать и к самой плате. У меня самого вышла такая ситуация, что пришлось немного обрезать плату, чтобы транзистор и диоды корректно располагались за пределами платы. В конце статьи плата показана полной, так как ее модификацию под нужные размеры я оставил на потом.


Следующий шаг – впаиваем обрезанную плату в реле.



Напоследок осталось впаять перемычки и прикрепить радиатор.




Вот и все. Устройство уже готово. Теперь его нужно покрыть лаком или попробовать залить канифолью. Собранное устройство не требует никаких настроек и оно подойдет к любому электродвигателю, так как ее максимальный ток составляет 74А. Использованный контролер IRF4905 дешевый, его легко найти в любом магазине электротоваров.

Вот вам вид готового к работе устройства.

Автоматический регулятор мощности (скорости) вентилятора охлаждения (АРМ) - это устройство, которое управляет работой одного из вентиляторов охлаждения автомобиля. Чтобы понять принцип его работы и для чего он нужен, давайте сначала вспомним штатные (заводские) режимы работы вентиляторов охлаждения.

Когда температура антифриза в системе охлаждения достигает 99 градусов, включается первый (левый, или правый - зависит от конкретной машины) вентилятор охлаждения на половинной скорости (через добавочный резистор) и продолжает работь до тех пор, пока температура не упадет до 94 градусов. В случае, если температура не падает, а продолжает расти, то на 100 градусах включаются оба вентилятора на максимальную скорость, и отключаются на тех же 94 градусах. Указанные пороговые значения температур могут отличаться на 1-2 градуса как в плюс, так и в минус (зависит от года выпуска авто и версии прошивки). Кстати, у некоторых машин 2006 года встречается непонятный алгоритм работы 1-го вентилятора: при температуре 99 градусов он начинает включаться и выключаться на первой скорости с интервалом в 20-30 секунд. Скорее всего, это "глючный" алгоритм, т.к. срок службы вентилятора, работающего в таком режиме резко сокращается (но об этом ниже). "Лечится" эта беда заменой прошивки .

Рассмотрим недостатки штатного режима работы вентиляторов охлаждения :

  1. Вентиляторы включаются "ударно". Особенно ярко это проявляется при включении второй скорости, то есть с места и сразу на "максималку". Это негативно сказывается на сроке их службы .
  2. Два вентилятора потребляют в режиме максимального обдува порядка 50 ампер, из-за чего происходит "просадка" напряжения в бортовой сети. В пробках оно может упасть ниже 11.5 вольт. Если у вас, вдобавок, включены фары, и вы простоите в этой пробке час, то есть большая вероятность, что аккумулятор разрядится до такой степени, что не сможет потом прокрутить стартер и двигатель попросту не заведется.
  3. Температура двигателя в пробках все время повышается и понижается, а такой режим работы ДВС совсем не является оптимальным .
  4. Работа двух вентиляторов производит достаточно сильный шум, что само по себе неприятно. Вдобавок, уменьшаются обороты холостого хода из-за п.2, в общем, вибрационно-звуковая картинка работы вентиляторов - то еще "удовольствие"!
  5. Известно, что когда мы выключаем прогретый двигатель, температура его резко повышается. Цилиндры раскалены, а циркуляция антифриза в системе прекратилась. Перегрев может достигать 105-108 градусов, и если двигатель в этот момент завести, то повышенный износ поршневой гарантирован.

Основное отличие системы АРМ от заводской схемы заключается в том, что он управляет работой вентилятора бесступенчато, в режиме реального времени. Скорость его вращения изменяется плавно и своевременно , при этом она, на исправном автомобиле, практически никогда не достигает максимума. Вентилятор не "сбивает" температуру, а поддерживает её.

Система АРМ состоит из собственно блока управления вентилятором и дополнительного датчика температуры с оригинальным патрубком, который вставляется в разрез верхнего шланга радиатора. Блок управления имеет входы для подключения датчика температуры и питания (12 вольт), а также силовой выход со штатным разъемом непосредственно на вентилятор.

АРМ работает следующим образом. Когда температура двигателя достигает 95 градусов, вентилятор охлаждения (мы подключаем к АРМ левый вентилятор, по нашему мнению, он охлаждает ДВС эффективнее) начинает вращаться. Скорость его вращения такова, что видно лопасти крыльчатки. По мере роста температуры, скорость вращения плавно плавно увеличивается, и когда рост её прекращается, обороты вентилятора больше не прибавляются и он вращается с постоянной скоростью. Если температура пошла вверх, то скорость опять немного увеличится, если вниз - уменьшится, и т.д. Таким образом, вентилятор работает на поддержание стабильной температуры охлаждающей жидкости в допустимом интервале.

Что нам все это дает? Вернемся к нашим пунктам (см. выше):

  • Вентилятор включается плавно , соответственно, срок его службы значительно увеличивается .
  • Потребляемый ток снижается в разы, поэтому ниже 12.5 вольт напряжение бортсети не понижается..
  • Температура ДВС стабильна на всех режимах, что очень хорошо.
  • Вентилятор Вы из салона слышать перестанете, он теперь будет работать практически незаметно.
  • Охлаждающая жидкость больше не перегревается после остановки горячего двигателя. Когда вы выключаете зажигание, АРМ остается включенным, он продолжает отслеживать температуру и увеличивает обдув, не позволяя антифризу закипать и создавать в системе охлаждения избыточное давление, вызывающее срабатывание клапана расширительного бачка. Когда двигатель охладится, АРМ полностью отключит вентилятор.
  • Главное же достоинство АРМ заключается в том, что вентилятор больше не ведет изо всех сил борьбу с перегревом, а работает в наиболее экономично м и благоприятном для двигателя режиме. А надежность системы охлаждения в целом только повысится , так как АРМ устанавливается как бы "поверх" штатной системы, при этом никаких изменений в ней не производится . В случае необходимости, можно просто вытащить из вентилятора разъем АРМ и вставить назад разъем штатной проводки. Работа системы полностью восстановится в заводском режиме . Второй вентилятор остается подключенным по штатной схеме, так что он тут же включится, если АРМ не справится. Необходимо отметить, что такая ситуация может сложиться только на тяжелом бездорожье, или в других, особенно тяжелых условиях.

АРМ производит Тверская компания ЗАО "ЭЛМАС" , а Техцентр "НИВА777" является ее официальным представителем в Московском регионе.

Сколько это стоит?

© 2024 taxinnext.ru
Автомобильный портал - Taxinnext