Нитрат целлюлозы классифицируется как. Нитраты целлюлозы

Нитраты целлюлозы, или азотнокислые эфиры целлюлозы, являются сложными эфирами целлюлозы и азотной кислоты.

Реакцию нитрования целлюлозы с азотной кислотой можно представить следующим образом:

N + 3 n HNO 3 <-> n + 3 n H 2 O

Эта реакция обратима. Устанавливается равновесие между целлюлозой (как спиртом), азотной кислотой, сложным эфиром и водой. Содержание воды в реакционной смеси является основным условием, определяющим состояние конечного равновесия.

Азотная кислота этерифицирует целлюлозу слишком медленно и не дает высокозамещенных стойких азотнокислых эфиров, а при концентрации ниже 75% HNO 3 вообще уже не этерифицирует целлюлозу. Поэтому этерификация одной HNO 3 нецелесообразна из-за большого ее расхода.

Нитрование обычно проводят в присутствии водоотнимающих средств, в качестве которых в промышленности применяют серную кислоту, а в лабораторной практике уксусный или фосфорный ангидрид (в смеси с уксусной или фосфорной кислотой). Нитрование целлюлозы тройными смесями HNO 3 - H 2 SO 4 - H 2 O является основой промышленного способа производства нитратов целлюлозы.

Серная кислота, входящая в состав нитрующей смеси, связывая выделяющуюся воду при реакции, сдвигает ее равновесие вправо. Иначе говоря, H 2 SO 4 регулирует количество свободной воды в смеси. Вода, наоборот, способствует переходу HNO 3 в гидратированную ионную форму:

NO2 - OH + H2O <-> H3O+ + NO3-

Скорость реакции нитрования зависит от соотношения в смеси между азотной и серной кислотами. Увеличение содержания H 2 SO 4 с параллельным уменьшением содержания HNO 3 сверх определенного предела понижает скорость реакции и приводит к деструкции целлюлозы. При слишком высоком содержании H 2 SO 4 целлюлоза растворяется в нитрующей смеси и далее гидролизуется. Однако необходимо поддерживать в смеси такое количество серной кислоты, при котором достигается хорошее набухание целлюлозы, облегчающее доступ азотной кислоты внутрь волокна и тем самым повышающее скорость процесса. Реакция становится пермутоидной. Поэтому подбирают оптимальное соотношение азотной и серной кислот. Обычно в практике используют отношение HNO 3 к H 2 SO 4 около 1:3.

При получении нитратов целлюлозы происходят побочные реакции: окислительная и гидролитическая деструкция, а также образуются частично замещенные сернокислые эфиры (сульфаты) целлюлозы:

C 6 H 9 O 4 (OH) + H 2 SO 4 > C 6 H 9 O 4 (OSO 2 OH) + H 2 O

Образование смешанных сернокислых и азотнокислых эфиров объясняет невозможность практически достичь теоретического содержания азота, соответствующего тринитрату целлюлозы. Присутствие сернокислых эфиров (очень нестойких) уменьшает устойчивость (стабильность) нитратов целлюлозы. Нитраты целлюлозы уже при умеренных температурах самопроизвольно разлагаются. Скорость разложения быстро растет с повышением температур и резко возрастает в присутствии примесей кислот, щелочей и др. разложение нитратов целлюлозы - самоускоряющийся процесс, который, особенно в присутствии влаги и кислорода, может закончиться вспышкой и взрывом. Это взывает необходимость стабилизации полученного нитрата целлюлозы, который для этого промывают горячей водой, разбавленными кислотами. 0,2 - 1%-ным раствором соды и т.д. Сернокислые эфиры при этом гидролизуются.

Повышение температуры увеличивает скорость процесса нитрования, не влияя на состояние равновесия. Однако при этом возрастают и скорости побочных процессов - окислительной и гидролитической деструкции. Увеличение температуры способствует и гидролитической деструкции целлюлозы, особенно при одновременном повышении содержания воды в кислой смеси. Вода повышает степень ионизации и, следовательно, гидролизующее действие кислот, особенно H 2 SO 4 .

Влияние продолжительности реакции на процесс подобно влиянию температуры. Так как реакция нитрования идет быстро, процесс осуществляется обычно в течение 30 мин - 1 ч. Дальнейшее увеличение продолжительности способствует гидролитической деструкции целлюлозы.

Вследствие отрицательного влияния H 2 SO 4 на процесс нитрования (образование сульфатов, гидролитическая деструкция) в некоторых случаях ее заменяют другими водоотнимающими агентами. В лабораторной практике обычно применяют смесь азотной, фосфорной кислот и фосфорного ангидрида или азотной, уксусной кислот и уксусного ангидрида. В этих случаях нитрование протекает почти в безводной среде, оно идет более полно (получаются тринитраты почти с теоретическим содержанием азота) и практически отсутствует деструкция целлюлозы.

Нитраты, полученные таким способом, используются для определения СП целлюлозы и ее фракционирования.

При нитровании с применением H 2 SO 4 иногда используют разбавители - инертные органические растворители (например, хлорированные углеводороды). Можно также проводить нитрование азотной кислотой в присутствии ее солей. Иногда вместо азотной кислоты применяют другие нитрующие агенты (например, ангидрид азотной кислоты).

Технический процесс получения нитратов целлюлозы состоит из следующих операций:

1. Измельчения и сушки целлюлозы;

2. Нитрования смесью кислот (состав смеси подбирается в зависимости от назначения конечного продукта);

3. Удаления отработанной смеси центрифугированием;

4. Стабилизации;

5. Регулирования вязкости конечного продукта (снижением сп способом гидролиза);

6. Вытеснения воды этиловым спиртом.

Древесная целлюлоза содержит примеси (лигнин и гемицеллюлозы), которые отрицательно влияют на качество продукта. Нитрат целлюлозы получается неоднородным и нестойким. Азотнокислые эфиры из хлопковой целлюлозы получаются более стойкими и имеют большую вязкость, чем эфиры из древесной сульфитной целлюлозы.

При производстве нитратов целлюлозы выполняют ряд анализов. Определяют процентное содержание азота (способом Лунге). По процентному содержанию азота [N] рассчитывают степень СЗ:

Анализ основан на омылении нитрата целлюлозы серной кислотой в присутствии ртути, восстанавливающей образующуюся азотную кислоту до окиси азота, объем которой измеряют:

2HNO 3 + 3 H 2 SO 4 + 6Hg > 2NO + 3Hg 2 SO 4 + 4H 2 O

Определяют стойкость нитрата целлюлозы при различной температуре, вязкости и СП, температуру вспышки и растворимость в различных растворителях.

10.5 Свойства нитратов целлюлозы и их применение

Различают следующие основные виды технических нитратов целлюлозы, которые в зависимости от СЗ и СП находят различное практическое применение: коллоксилин (10,7 - 12,5% N), пироколлодий (12,6 ± 0,1% N), пироксилин №2 (12,2 12,5% N), пироксилин №1 (13,0 - 13,5% N).

Нитраты целлюлозы, содержащие 9 - 11% N, растворяются в этиловом спирте, нитраты с содержанием до 13% N - в смеси этилового спирта и эфира. Все нитраты целлюлозы растворяются в ацетоне. Нитраты целлюлозы любой степени замещения не растворяются в воде и неполярных растворителях (например, в бензоле).

Коллоксилин применяют для производства этрола, целлулоида и лаков. Он не устойчив к действию кислот и щелочей. Разбавленные минеральные кислоты вызывают медленную денитрацию коллоксилина. Концентрированная серная кислота растворят коллоксилин. Коллоксилин растворяется в кетонах (ацетон), сложных эфирах (этилацетат, бутилацетат и др.), фурфуроле, диоксане и уксусной кислоте; устойчив к действию ароматических и алифатических углеводородов и масел. Из высококипящих растворителей, применяемых в качестве пластификаторов, коллоксилин растворяется в камфаре, эфирах фталевой кислоты и др. Этрольные и целлулоидный коллоксилины с содержанием азота 10,9 - 11,2% растворяются в спирто-камфарных смесях. Коллоксилин с содержанием азота 11,2 - 12,5%, предназначенный для изготовления нитролаков, нитроэмалей и нитромастик, растворяется в смеси растворителей.

Фракционный состав нитратов целлюлозы влияет на их стабильность, механические свойства пленок и т.п. Основным их недостатком является горючесть и легкая воспламеняемость.

Целлулоид представляет собой пластическую массу, состоящую из коллоксилина, пластификатора (камфары), добавок (например, фосфорнокислого натрия), пигментов и красителей. По существу это твердый раствор нитрата целлюлозы в камфаре. Широко применяется для изготовления галантерейных изделий, игрушек, для отделки музыкальных инструментов, изготовления оправ для очков и др.

Этрол представляет собой термопластический материал, получаемый на основе пластифицированного нитрата целлюлозы с минеральными и органическими наполнителями. Из него изготавливают рулевые колеса, рычаги переключения передач, приборные щитки, детали холодильников, электроизоляционные детали изделий ширпотреба.

Пироксилин (СП 1000 - 2000) применяется для изготовления взрывчатых веществ и порохов. Различают три вида порохов, получаемых на основе нитрата целлюлозы: пироксилиновые (температура горения около 2500єС), баллистические и кордитные. Два последних также называют нитроглицериновыми (температура горения около 3500єС).

При получении порохов применяют желатинирующие добавки (смесь этилового спирта и диэтилового эфира, нитроглицерин и другие органические растворители), стабилизаторы (например, дефениламин), флегматизаторы (камфара). Для изготовления баллистических порохов применяют коллоксилин с высоким содержанием азота (11,5 - 12,2%). Пороха для ракетных двигателей часто называют твердыми ракетными топливами.

В зависимости от содержания азота различают

  • коллоксилин (10,7 - 12,2 % азота)
  • пироксилин № 2 (12,05 - 12,4 % азота)
  • пироколлодий (12,6 % азота) - особый вид нитроцеллюлозы, впервые полученный Д. И. Менделеевым , нерастворим в спирте, растворяется в смеси спирта с эфиром.
  • пироксилин № 1 (13,0 - 13,5 % азота)
  • 1832 - французский химик Анри Браконно (Henri Braconnot) обнаружил, что при обработке крахмала и древесных волокон азотной кислотой образуется нестойкий горючий и взрывоопасный материал, который он назвал Ксилоидин (Xyloїdine)
  • 1838 - другой французский химик, Теофиль-Жуль Пелуз (Theophile-Jules Pelouze), обработал подобным образом бумагу и картон и получил похожий материал, названный им Нитрамидин (Nitramidine). Низкая стабильность полученной нитроцеллюлозы не позволяла использовать её в технических целях.
  • 1846 - швейцарский химик Кристиан Фридрих Шёнбейн (Christian Fridrich Schönbein) случайно обнаружил более практичный способ получения нитроцеллюлозы. Во время работы в кухне он пролил концентрированную азотную кислоту на стол. Для удаления кислоты химик воспользовался хлопковой тряпкой, а затем повесил её сушиться на печь. После высыхания ткань сгорела со взрывом. Шёнбейн разработал первый приемлемый способ получения нитроцеллюлозы - обработкой одной части хлопковых волокон в пятнадцати частях смеси серной и азотной кислот в соотношении 50:50. Азотная кислота реагировала с целлюлозой с образованием воды и серная кислота была необходима для предотвращения разбавления. После нескольких минут обработки хлопок удалялся из кислоты, промывался в холодной воде до удаления кислот и высушивался.
Полученный новый материал незамедлительно был применён в производстве пороха под названием ружейного хлопка (Guncotton). Нитроцеллюлоза давала в 6 раз больший объем продуктов горения, чем дымный порох , намного меньше дыма и меньше нагревала оружие. Однако производство её было крайне опасным и сопровождалось многочисленными взрывами на производствах. Дальнейшие исследования показали, что ключевую роль в опасности производства играет чистота сырья - если хлопок не был тщательно очищен и высушен, происходили внезапные взрывы.
  • 1869 - в Англии под руководством Фредерика Августа Абеля (Frederick Augustus Abel) была разработана технология с измельчением нитроцеллюлозы в специальных аппаратах- голландерах и многократными (до 8 раз) длительными промывками и сушками, каждая из которых длилась до 2 суток. Голландер приставляет собой овальную в сечении ванну с закрепленными в ней поперечными ножами. Сбоку от ножей проходит вал, с волнистыми дисковыми ножами. При вращении вала, ножи вала проходят в промежутках между неподвижными ножами и режут волокно нитроцеллюлозы. Соотношение серной и азотной кислот в смеси было изменено до 2:1. По такой технологии удавалось получать достаточно стабильный при хранении и применении продукт.

Спустя десять лет после патентования этой технологии, во всем мире начали принимать на вооружение пироксилин, сначала в качестве начинки снарядов и морских мин. Другое применение, которое коллоксилин нашел практически сразу – производство клея для заклеивания небольших ранок. За неимением пластыря (в нашем сегодняшнем понимании), этот клей достаточно быстро обрел популярность. Фактически, это была разновидность густого нитролака. Последовавшая в течение нескольких лет после этого, серия взрывов на предприятиях и складах, занятых процессами с участием пироксилина, заставили пристальнее взглянуть на проблему стабилизации этого продукта. Несмотря на все сложности, с 1879 года и по сей день, нитраты целлюлозы находят широкое применение в технологии энергонасыщенных соединений и многих других областях промышленности.

Получение

Лучшим сырьём для производства нитроцеллюлозы считаются длинноволокнистые сорта хлопка ручной сборки. Хлопок машинной сборки и древесная целлюлоза содержат значительное количество примесей, усложняющих подготовку и снижающих качество продукции. Нитроцеллюлозу получают действием на очищенную, разрыхлённую и высушенную целлюлозу смесью серной и азотной кислот, называемой нитрующей смесью: Ниже приведена реакция получения тринитроцеллюлозы в лабораторных условиях: Концентрация применяемой азотной кислоты обычно выше 77 %, а соотношение кислот и целлюлозы может быть от 30:1 до 100:1. Полученный после нитрования продукт подвергается многоступенчатой промывке, обработке слабокислыми и слабощелочными растворами, измельчению для повышения чистоты и стойкости при хранении. Сушка нитроцеллюлозы - сложный процесс, иногда совместно с сушкой применяется обезвоживание (этанолом , спирто-эфирными смесями). Практически вся нитроцеллюлоза после получения используется в производстве различных продуктов. В случае необходимости хранится во влажном состоянии с содержанием воды или спирта не ниже 20 %.

Промышленный метод получения

Варка нитроцеллюлоз при 90-95°C в проточном реакторе. При этом происходит разрушение малоустойчивых соединений и вымывание продуктов распада. Кроме того, горячая вода легче проникает в структуру нитроцеллюлозы. Недостаток этого процесса состоит в деструкции нитроцеллюлозы до продуктов низкой молекулярной массой (5-20 структурных звеньев). Поэтому, этим процессом не злоупотребляют, особенно если нужен продукт с хорошими физико-механическими свойствами (например, для пироксилиновых порохов или дистанционных трубок).

Другая технологическая тонкость стабилизации нитроцеллюлоз состоит в перекристаллизации нитроцеллюлозы из органических растворителей, в присутствии раствора соды. В отличие от предыдущего процесса, этот процесс ведется при низких температурах (10-25°C), но, очень продолжительное время и при интенсивном перемешивании. После стабилизации центрифугируют раствор соды, полученный раствор пироксилина в органике идет на обезвоживание и дальнейшее использование.

Для увеличения срока годности, в нитроцеллюлозу (в готовом продукте) вводятся стабилизаторы химической стойкости, главным образом: централиты, дифениламин , камфору . Раньше использовали также амиловый спирт , канифоль , аминные производные нафталина и др. но, они показали низкую эффективность. Главная функция стабилизаторов – связывание образующейся при разложении азотной кислоты и оксидов азота . В промышленности, полученную нитроцеллюлозу транспортируют, хранят и используют в виде колоксилиново-водной взвеси (КВВ). Содержание коллоксилина в этом материале 10-15%, по свойствам КВВ напоминает средне между манной кашей и густым клеем ПВА . Больше всего напоминает бумажную пульпу, но с мелким волокном.

Колоксилиново-водную взвесь после отмывки от кислот, накапливают в смесители – емкости объемом 100-350 м3, снабженные мешалками для предотвращения оседания коллоксилина и усреднения партии. После перемешивания в течение нескольких часов, отбирают пробу на уточнение свойств, главным образом: молекулярной массы , содержание азота, содержание кислот и йодкрахмальную пробу на устойчивость. Для использования в чистом виде, нитроцеллюлозу отделяют от воды на барабанных фильтрах, при этом влажность материала составляет около 50%. В таком виде нитроцеллюлозу можно транспортировать в различной таре. Для дополнительного обезвоживания, нитроцеллюлозу отжимают на центрифуге при 800-1000 об./мин. При этом получается нитроцеллюлоза с влажностью около 6-8%. Дальнейшее обезвоживание проводят промывкой этиловым спиртом на специальной центрифуге. При этом, спирт подается в центр барабана и двигается к периферии под действием центробежных сил. Спирт регенерируют ректификацией .

Для получения баллиститных или сферических порохов, используют непосредственно колоксилиново-водную взвесь. Для производства сферических порохов можно применять и отжатую до 10% влажности нитроцеллюлозу, при этом отдельная проблема состоит в том, что при диспергировании порохового лака в водной фазе и последующее отверждение гранул пороха, приводит к капсулированию некоторого количества воды внутри пороха. Некоторую сложность в получении нитратов целлюлозы составляет высокая впитывающая способность целлюлозы, при неоднородности ее структуры и плотности волокна. Это вынуждает применять 50-100 кратный избыток нитрующей смеси. Если это терпимо для лабораторий, то совершенно неприемлемо для промышленного производства.

В промышленности применяют барабанные непрерывно действующие аппараты противотока, по принципу "карусели". Суть их работы заключается в подаче целлюлозного волокна с одной стороны, а нитрующей смеси с другой, противотоком. При этом, нитрующая смесь орошает плоский вертикальный барабан, заполненный целлюлозным волокном, сверху. Смесь стекает из данной секции в секцию поддона, откуда подается в следующую секцию насосом. И так до 30-40 секций. Барабан медленно вращается, в одной точке происходит непрерывная разгрузка продукта, в другой точке загрузка целлюлозы.

Существует разновидность такого аппарата, работающая не на принудительной перекачке кислотной смеси, а под действием центробежных сил – нитратор-центрифуга. Этот аппарат менее удобен в настройке, но он значительно компактнее, дешевле в изготовлении и позволяет быстрее отжимать кислоту из готового продукта.

Такой процесс позволяет достичь выхода до 30-45% по азотной кислоте. При этом, отработанная кислотная смесь, содержащая до 25% воды и 10% азотной кислоты (остальное серная кислота), направляется на регенерацию в перегонный аппарат. При температуре упаривания серной кислоты под небольшим вакуумом (около 200°C) происходит разрушение нитротел (побочные продукты нитрования любой органики, неустойчивые нитро-, нитрозо- и нитратные производные) до оксидов углерода и азота, а также, воды и смолистых обугленных веществ. Оксиды азота и вода улавливаются во влажном скруббере и идут на производство неорганических нитратов, а упаренная до 96-98% серная кислота возвращается в процесс для приготовления новой партии нитрующей смеси.

Применение

Нитроцеллюлоза производится в больших количествах во многих странах мира и находит много различных применений:

  • Бездымный порох , обычно пироксилин . За более чем 100-летнюю историю развития химии и технологии предложены тысячи разнообразных составов, многие из которых производились десятками и сотнями тысяч тонн (баллистит , кордит).
  • Взрывчатые вещества . Нитроцеллюлоза в чистом виде из-за низкой термической стойкости не применяется, но существует неисчислимое множество реальных и фантастических взрывчатых составов с её применением. В 1885 году была впервые получена смесь нитроцеллюлозы с нитроглицерином , названная «гремучий студень ».
  • Ранее использовалась как подложка фото- и киноплёнки . в связи с горючестью была вытеснена ацетилцеллюлозой и полиэтилентерефталатом (лавсаном) .
  • Целлулоид . До сих пор лучшие шарики для настольного тенниса производятся из нитроцеллюлозы.
  • Нитроцеллюлозные мембраны для иммобилизации белков .
  • В индустрии развлечений для производства быстросгорающих предметов в реквизите артистов-фокусников.
  • Нитроцеллюлозные мембраны используют для гибридизации нуклеиновых кислот, например, при Саузерн блоттинге .
  • Плёнкообразующая основа нитроцеллюлозных лаков , красок , эмалей .

См. также

Напишите отзыв о статье "Нитроцеллюлоза"

Отрывок, характеризующий Нитроцеллюлоза

Многие историки говорят, что Бородинское сражение не выиграно французами потому, что у Наполеона был насморк, что ежели бы у него не было насморка, то распоряжения его до и во время сражения были бы еще гениальнее, и Россия бы погибла, et la face du monde eut ete changee. [и облик мира изменился бы.] Для историков, признающих то, что Россия образовалась по воле одного человека – Петра Великого, и Франция из республики сложилась в империю, и французские войска пошли в Россию по воле одного человека – Наполеона, такое рассуждение, что Россия осталась могущественна потому, что у Наполеона был большой насморк 26 го числа, такое рассуждение для таких историков неизбежно последовательно.
Ежели от воли Наполеона зависело дать или не дать Бородинское сражение и от его воли зависело сделать такое или другое распоряжение, то очевидно, что насморк, имевший влияние на проявление его воли, мог быть причиной спасения России и что поэтому тот камердинер, который забыл подать Наполеону 24 го числа непромокаемые сапоги, был спасителем России. На этом пути мысли вывод этот несомненен, – так же несомненен, как тот вывод, который, шутя (сам не зная над чем), делал Вольтер, говоря, что Варфоломеевская ночь произошла от расстройства желудка Карла IX. Но для людей, не допускающих того, чтобы Россия образовалась по воле одного человека – Петра I, и чтобы Французская империя сложилась и война с Россией началась по воле одного человека – Наполеона, рассуждение это не только представляется неверным, неразумным, но и противным всему существу человеческому. На вопрос о том, что составляет причину исторических событий, представляется другой ответ, заключающийся в том, что ход мировых событий предопределен свыше, зависит от совпадения всех произволов людей, участвующих в этих событиях, и что влияние Наполеонов на ход этих событий есть только внешнее и фиктивное.
Как ни странно кажется с первого взгляда предположение, что Варфоломеевская ночь, приказанье на которую отдано Карлом IX, произошла не по его воле, а что ему только казалось, что он велел это сделать, и что Бородинское побоище восьмидесяти тысяч человек произошло не по воле Наполеона (несмотря на то, что он отдавал приказания о начале и ходе сражения), а что ему казалось только, что он это велел, – как ни странно кажется это предположение, но человеческое достоинство, говорящее мне, что всякий из нас ежели не больше, то никак не меньше человек, чем великий Наполеон, велит допустить это решение вопроса, и исторические исследования обильно подтверждают это предположение.
В Бородинском сражении Наполеон ни в кого не стрелял и никого не убил. Все это делали солдаты. Стало быть, не он убивал людей.
Солдаты французской армии шли убивать русских солдат в Бородинском сражении не вследствие приказания Наполеона, но по собственному желанию. Вся армия: французы, итальянцы, немцы, поляки – голодные, оборванные и измученные походом, – в виду армии, загораживавшей от них Москву, чувствовали, что le vin est tire et qu"il faut le boire. [вино откупорено и надо выпить его.] Ежели бы Наполеон запретил им теперь драться с русскими, они бы его убили и пошли бы драться с русскими, потому что это было им необходимо.
Когда они слушали приказ Наполеона, представлявшего им за их увечья и смерть в утешение слова потомства о том, что и они были в битве под Москвою, они кричали «Vive l"Empereur!» точно так же, как они кричали «Vive l"Empereur!» при виде изображения мальчика, протыкающего земной шар палочкой от бильбоке; точно так же, как бы они кричали «Vive l"Empereur!» при всякой бессмыслице, которую бы им сказали. Им ничего больше не оставалось делать, как кричать «Vive l"Empereur!» и идти драться, чтобы найти пищу и отдых победителей в Москве. Стало быть, не вследствие приказания Наполеона они убивали себе подобных.
И не Наполеон распоряжался ходом сраженья, потому что из диспозиции его ничего не было исполнено и во время сражения он не знал про то, что происходило впереди его. Стало быть, и то, каким образом эти люди убивали друг друга, происходило не по воле Наполеона, а шло независимо от него, по воле сотен тысяч людей, участвовавших в общем деле. Наполеону казалось только, что все дело происходило по воле его. И потому вопрос о том, был ли или не был у Наполеона насморк, не имеет для истории большего интереса, чем вопрос о насморке последнего фурштатского солдата.
Тем более 26 го августа насморк Наполеона не имел значения, что показания писателей о том, будто вследствие насморка Наполеона его диспозиция и распоряжения во время сражения были не так хороши, как прежние, – совершенно несправедливы.
Выписанная здесь диспозиция нисколько не была хуже, а даже лучше всех прежних диспозиций, по которым выигрывались сражения. Мнимые распоряжения во время сражения были тоже не хуже прежних, а точно такие же, как и всегда. Но диспозиция и распоряжения эти кажутся только хуже прежних потому, что Бородинское сражение было первое, которого не выиграл Наполеон. Все самые прекрасные и глубокомысленные диспозиции и распоряжения кажутся очень дурными, и каждый ученый военный с значительным видом критикует их, когда сражение по ним не выиграно, и самью плохие диспозиции и распоряжения кажутся очень хорошими, и серьезные люди в целых томах доказывают достоинства плохих распоряжений, когда по ним выиграно сражение.
Диспозиция, составленная Вейротером в Аустерлицком сражении, была образец совершенства в сочинениях этого рода, но ее все таки осудили, осудили за ее совершенство, за слишком большую подробность.
Наполеон в Бородинском сражении исполнял свое дело представителя власти так же хорошо, и еще лучше, чем в других сражениях. Он не сделал ничего вредного для хода сражения; он склонялся на мнения более благоразумные; он не путал, не противоречил сам себе, не испугался и не убежал с поля сражения, а с своим большим тактом и опытом войны спокойно и достойно исполнял свою роль кажущегося начальствованья.

Вернувшись после второй озабоченной поездки по линии, Наполеон сказал:
– Шахматы поставлены, игра начнется завтра.
Велев подать себе пуншу и призвав Боссе, он начал с ним разговор о Париже, о некоторых изменениях, которые он намерен был сделать в maison de l"imperatrice [в придворном штате императрицы], удивляя префекта своею памятливостью ко всем мелким подробностям придворных отношений.
Он интересовался пустяками, шутил о любви к путешествиям Боссе и небрежно болтал так, как это делает знаменитый, уверенный и знающий свое дело оператор, в то время как он засучивает рукава и надевает фартук, а больного привязывают к койке: «Дело все в моих руках и в голове, ясно и определенно. Когда надо будет приступить к делу, я сделаю его, как никто другой, а теперь могу шутить, и чем больше я шучу и спокоен, тем больше вы должны быть уверены, спокойны и удивлены моему гению».
Окончив свой второй стакан пунша, Наполеон пошел отдохнуть пред серьезным делом, которое, как ему казалось, предстояло ему назавтра.
Он так интересовался этим предстоящим ему делом, что не мог спать и, несмотря на усилившийся от вечерней сырости насморк, в три часа ночи, громко сморкаясь, вышел в большое отделение палатки. Он спросил о том, не ушли ли русские? Ему отвечали, что неприятельские огни всё на тех же местах. Он одобрительно кивнул головой.
Дежурный адъютант вошел в палатку.
– Eh bien, Rapp, croyez vous, que nous ferons do bonnes affaires aujourd"hui? [Ну, Рапп, как вы думаете: хороши ли будут нынче наши дела?] – обратился он к нему.
– Sans aucun doute, Sire, [Без всякого сомнения, государь,] – отвечал Рапп.
Наполеон посмотрел на него.
– Vous rappelez vous, Sire, ce que vous m"avez fait l"honneur de dire a Smolensk, – сказал Рапп, – le vin est tire, il faut le boire. [Вы помните ли, сударь, те слова, которые вы изволили сказать мне в Смоленске, вино откупорено, надо его пить.]
Наполеон нахмурился и долго молча сидел, опустив голову на руку.
– Cette pauvre armee, – сказал он вдруг, – elle a bien diminue depuis Smolensk. La fortune est une franche courtisane, Rapp; je le disais toujours, et je commence a l"eprouver. Mais la garde, Rapp, la garde est intacte? [Бедная армия! она очень уменьшилась от Смоленска. Фортуна настоящая распутница, Рапп. Я всегда это говорил и начинаю испытывать. Но гвардия, Рапп, гвардия цела?] – вопросительно сказал он.
– Oui, Sire, [Да, государь.] – отвечал Рапп.
Наполеон взял пастильку, положил ее в рот и посмотрел на часы. Спать ему не хотелось, до утра было еще далеко; а чтобы убить время, распоряжений никаких нельзя уже было делать, потому что все были сделаны и приводились теперь в исполнение.
– A t on distribue les biscuits et le riz aux regiments de la garde? [Роздали ли сухари и рис гвардейцам?] – строго спросил Наполеон.
– Oui, Sire. [Да, государь.]
– Mais le riz? [Но рис?]
Рапп отвечал, что он передал приказанья государя о рисе, но Наполеон недовольно покачал головой, как будто он не верил, чтобы приказание его было исполнено. Слуга вошел с пуншем. Наполеон велел подать другой стакан Раппу и молча отпивал глотки из своего.
– У меня нет ни вкуса, ни обоняния, – сказал он, принюхиваясь к стакану. – Этот насморк надоел мне. Они толкуют про медицину. Какая медицина, когда они не могут вылечить насморка? Корвизар дал мне эти пастильки, но они ничего не помогают. Что они могут лечить? Лечить нельзя. Notre corps est une machine a vivre. Il est organise pour cela, c"est sa nature; laissez y la vie a son aise, qu"elle s"y defende elle meme: elle fera plus que si vous la paralysiez en l"encombrant de remedes. Notre corps est comme une montre parfaite qui doit aller un certain temps; l"horloger n"a pas la faculte de l"ouvrir, il ne peut la manier qu"a tatons et les yeux bandes. Notre corps est une machine a vivre, voila tout. [Наше тело есть машина для жизни. Оно для этого устроено. Оставьте в нем жизнь в покое, пускай она сама защищается, она больше сделает одна, чем когда вы ей будете мешать лекарствами. Наше тело подобно часам, которые должны идти известное время; часовщик не может открыть их и только ощупью и с завязанными глазами может управлять ими. Наше тело есть машина для жизни. Вот и все.] – И как будто вступив на путь определений, definitions, которые любил Наполеон, он неожиданно сделал новое определение. – Вы знаете ли, Рапп, что такое военное искусство? – спросил он. – Искусство быть сильнее неприятеля в известный момент. Voila tout. [Вот и все.]
Рапп ничего не ответил.
– Demainnous allons avoir affaire a Koutouzoff! [Завтра мы будем иметь дело с Кутузовым!] – сказал Наполеон. – Посмотрим! Помните, в Браунау он командовал армией и ни разу в три недели не сел на лошадь, чтобы осмотреть укрепления. Посмотрим!
Он поглядел на часы. Было еще только четыре часа. Спать не хотелось, пунш был допит, и делать все таки было нечего. Он встал, прошелся взад и вперед, надел теплый сюртук и шляпу и вышел из палатки. Ночь была темная и сырая; чуть слышная сырость падала сверху. Костры не ярко горели вблизи, во французской гвардии, и далеко сквозь дым блестели по русской линии. Везде было тихо, и ясно слышались шорох и топот начавшегося уже движения французских войск для занятия позиции.
Наполеон прошелся перед палаткой, посмотрел на огни, прислушался к топоту и, проходя мимо высокого гвардейца в мохнатой шапке, стоявшего часовым у его палатки и, как черный столб, вытянувшегося при появлении императора, остановился против него.
– С которого года в службе? – спросил он с той привычной аффектацией грубой и ласковой воинственности, с которой он всегда обращался с солдатами. Солдат отвечал ему.
– Ah! un des vieux! [А! из стариков!] Получили рис в полк?
– Получили, ваше величество.
Наполеон кивнул головой и отошел от него.

В половине шестого Наполеон верхом ехал к деревне Шевардину.
Начинало светать, небо расчистило, только одна туча лежала на востоке. Покинутые костры догорали в слабом свете утра.
Вправо раздался густой одинокий пушечный выстрел, пронесся и замер среди общей тишины. Прошло несколько минут. Раздался второй, третий выстрел, заколебался воздух; четвертый, пятый раздались близко и торжественно где то справа.
Еще не отзвучали первые выстрелы, как раздались еще другие, еще и еще, сливаясь и перебивая один другой.
Наполеон подъехал со свитой к Шевардинскому редуту и слез с лошади. Игра началась.

Вернувшись от князя Андрея в Горки, Пьер, приказав берейтору приготовить лошадей и рано утром разбудить его, тотчас же заснул за перегородкой, в уголке, который Борис уступил ему.
Когда Пьер совсем очнулся на другое утро, в избе уже никого не было. Стекла дребезжали в маленьких окнах. Берейтор стоял, расталкивая его.
– Ваше сиятельство, ваше сиятельство, ваше сиятельство… – упорно, не глядя на Пьера и, видимо, потеряв надежду разбудить его, раскачивая его за плечо, приговаривал берейтор.
– Что? Началось? Пора? – заговорил Пьер, проснувшись.
– Изволите слышать пальбу, – сказал берейтор, отставной солдат, – уже все господа повышли, сами светлейшие давно проехали.
Пьер поспешно оделся и выбежал на крыльцо. На дворе было ясно, свежо, росисто и весело. Солнце, только что вырвавшись из за тучи, заслонявшей его, брызнуло до половины переломленными тучей лучами через крыши противоположной улицы, на покрытую росой пыль дороги, на стены домов, на окна забора и на лошадей Пьера, стоявших у избы. Гул пушек яснее слышался на дворе. По улице прорысил адъютант с казаком.
– Пора, граф, пора! – прокричал адъютант.
Приказав вести за собой лошадь, Пьер пошел по улице к кургану, с которого он вчера смотрел на поле сражения. На кургане этом была толпа военных, и слышался французский говор штабных, и виднелась седая голова Кутузова с его белой с красным околышем фуражкой и седым затылком, утонувшим в плечи. Кутузов смотрел в трубу вперед по большой дороге.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ВВЕДЕНИЕ

5.3.3 Остановка оборудования

9.ОХРАНА ТРУДА

9.5 Средства индивидуальной защиты

10.МАТЕРИАЛЬНЫЕ РАСЧЕТЫ

10.1 Расчет расходной нормы целлюлозы

ВВЕДЕНИЕ

Нитроцеллюлоза или азотнокислый эфир целлюлозы были получены еще в 1832 г. путем обработки концентрированной азотной кислотой хлопка, древесины, бумаги, а в 1845 г. была применена обработка целлюлозы нитрующими смесями, содержащими азотную и серную кислоты.

С 1869 г. нитроцеллюлоза используется для производства пластических масс (целлулоида), а с 1886 г. - для получения бездымного пороха.

Специфические свойства нитроцеллюлозы определяют области ее применения. Производство бездымного пороха и динамитов в области военной промышленности, а также производство нитрошелка, нитролаков, нитрокрасок, целлулоида, кинопленки в области мировой промышленности - все это тесно связано с производством нитроцеллюлозы.

Легкость воспламенения, возможность превращения путем желатинизации в медленногорящий материал, активный кислородный баланс молекулы, выделение большого количества газов при разложении и доступность исходных материалов объясняют применение нитратов целлюлозы для производства бездымного пороха.

Высокая механическая прочность, возможность перевода в пластическое состояние при сравнительно незначительном повышении температуры, хорошая совместимость с доступными пластификаторами определили применение нитроцеллюлозы для производства целлулоида.

Растворимость нитратов целлюлозы в известных растворителях и высокие механические свойства получаемых пленок позволяют использовать азотнокислые эфиры целлюлозы для производства кинопленки и лаковых покрытий.

В оборонной промышленности используются нитроцеллюлоза, из которой получают пороха и твердые ракетные топлива. Для изготовления пироксилинового и баллиститного порохов используют смесевые пироксилины или коллоксилин.

Коллоксилин нашел широкое применение в лакокрасочной промышленности при изготовлении быстровысыхающих лаков и эмалей для автомобильной, мебельной и других отраслей промышленности, а также для изготовления целлулоида, баллиститных порохов.

В последние годы применение нитратов целлюлозы значительно сократилось. Они полностью сохраняют свое значение для производства бездымного пороха и некоторых типов взрывчатых веществ, но применение их в других отраслях промышленности непрерывно уменьшается. Основными причинами являются горючесть изделий из нитроцеллюлозы и появление синтетических полимеров, пригодных для изготовления аналогичных, но не горючих изделий.

1. ВЫБОР И ОБОСНОВАНИЕ СПОСОБА ПРОИЗВОДСТВА

Для производства нитроцеллюлозы в предвоенные годы использовалось оборудование периодического действия. С ростом потребности народного хозяйства в нитроцеллюлозе необходимо было техническое переоснащение существующих производств. Были проведены научно-исследовательские работы, в результате которых были внедрены непрерывно действующие агрегаты.

Промышленное производство нитроцеллюлозы в настоящее время осуществляется по нескольким технологическим схемам, использующим как непрерывно действующее современное оборудование, так и оборудование периодического действия.

Наряду с разработкой нового непрерывно действующего оборудования для производства нитроцеллюлозы, совершенствовались и технологические процессы. Все это позволило перевести производство нитроцеллюлозы на более высокий технический уровень.

Для удаления нитрующей смеси из нитроцеллюлозы в технике применяется метод вытеснения одной жидкости другой. Этот метод производят на специальных аппаратах, в которых вся масса отработанных кислот по окончании процесса медленно вытесняется из нитроцеллюлозы водой. Метод вытеснения имеет ряд недостатков, в том числе сильное разбавление отработанных нитрующих смесей, что требует значительных мощностей для их разгонки.

Процесс вытеснения отработанных кислотных смесей из нитроцеллюлозы является многоступенчатым и сопровождается тепловым эффектом. Повышение температуры отработанных кислот отрицательно влияет на физико-химические свойства нитроцеллюлозы. Для устранения этой проблемы необходимо дополнительное оборудование - холодильники - что приводит к увеличению занимаемой площади помещения.

Кислотная смесь разбавлялась пятидесяти - семидесяти - кратным количеством воды. Регенерация кислот с такой низкой молекулярной массой нерентабельна. Они сливались в водоемы и частично использовались как транспортные.

Безвозвратные потери кислот в производстве нитроцеллюлозы не допустимы. Такое количество кислот, попадая в водоемы, наносит огромный ущерб народному хозяйству. Однако наряду с недостатками этого метода можно выделить одно достоинство - это большая производительность данного технологического процесса.

В промышленности широкое применение нашли и другие нитрационные агрегаты, состоящие из кислотоотжимочных центрифуг. Данный метод позволяет получить нитроцеллюлозу с остаточной кислотностью 39,5%, что удовлетворяет техническим требованиям, а дальнейший отжим может привести к саморазложению нитроцеллюлозы в центрифуге.

Этот метод не требует дополнительной установки оборудования, время рекуперации занимает несколько минут. Он позволяет применить не только гидровыгрузку, но и создает предпосылки для высокомеханизированного непрерывно действующего комплекса по изготовлению нитроцеллюлозы.

К главным достоинствам пульсирующих центрифуг относятся: непрерывность процесса, относительно небольшое дробление осадка, хорошая степень обезвоживания осадка и эффективная его промывка.

Недостатком данного метода является то, что он снижает производительность центрифуги.

В дипломном проекте рассмотрен метод центрифугирования, который позволяет существенно сократить отходы отработанных кислотных смесей, направляемых на регенерацию; обеспечивает исключение избыточных кислот при изготовление коллоксилина. При этом количество оборудования существенно сокращается.

Центрифуга обеспечивает отжим нитроцеллюлозы от отработанной кислотной смеси до остаточной кислотности 39,5%, что соответствует допустимому нижнему пределу кислотности нитроцеллюлозы (35-40%), обуславливающему низкую степень чувствительности продукта к саморазложению.

При использовании центрифуги 1/2 ФГП-809К-05 на фазе рекуперации отработанных кислотных смесей отсутствует их избыток, который было бы необходимо направлять на регенерацию, а так, вся отработанная кислотная смесь после центрифуги возвращается в технологический процесс, на фазу приготовления рабочих кислотных смесей. С помощью тиристоного преобразователя управляющий электрическим двигателем центрифуги, можно регулировать процесс кислоотжима, тем самым повысить производительность центрифуги и качество нитроцеллюлозы

Исключение из технологического процесса аппарата НУОК для рекуперации отработанных кислотных смесей позволило:

Значительно сократить количество разбавленных кислотных смесей, вытесняемых из нитроцеллюлозы и направленных на регенерацию;

Повысить качество и выход нитроцеллюлозы за счет сокращения времени ее контакта с отработанными кислотными смесями.

2. ХАРАКТЕРИСТИКА ПРОДУКЦИИ, СЫРЬЯ И МАТЕРИАЛОВ

2.1 Характеристика готовой продукции

Коллоксилин «Н», n ОСТ В84-2440-90Т используют для изготовления баллиститного пороха и сферических продуктов, изготовления лаков и пленок.

Физико-химические свойства нитроцеллюлозы:

1) Действие на нитроцеллюлозу различных реагентов

По сравнению с целлюлозой нитроцеллюлоза обладает большей устойчивостью к действию растворов кислот. Разбавленными до 1% растворами сильных кислот можно обрабатывать нитроцеллюлозу при высоких температурах в течение длительного времени, при этом содержание азота в ней не изменяется.

Серная кислота с массовой долей 20% на нитроцеллюлозу почти не действует, а с массовой долей 92% при минусовых температурах денитрует и растворяет нитроцеллюлозу. Эта реакция используется при определении содержания азота в нитроцеллюлозе по методу Лунге.

Азотная кислота с массовой долей 50% при минусовых температурах медленно денитрует нитроцеллюлозу с образованием низкомолекулярных продуктов. Азотная кислота с массовой долей 80-85% растворяет низкомолекулярные нитраты целлюлозы. При нагревании до 70-800С азотная кислота с массовой долей 60% разрушает нитраты целлюлозы, в холодном состоянии денитрует с постепенной деполимеризацией частиц и разрушением волокна.

Нитроцеллюлоза устойчива и к действию окислителей. Небольшая чувствительность нитроцеллюлозы к кислотам и окислителям позволяет производить отбелку высококачественных коллоксилинов в кислотной среде.

Щелочи очень легко омыляют (денитруют) нитроцеллюлозу. Разбавленные до 1% растворы едких щелочей при минусовых температурах вызывают денитрацию нитроцеллюлозы и снижение вязкости.

Нитроцеллюлоза чувствительна к свету. При интенсивном и длительном воздействии света на нитроцеллюлозу наблюдается ее медленное разложение.

Под действием света уменьшается содержание азота, появляются газообразные продукты разложения, уменьшается масса нитроцеллюлозы, ее механическая прочность, вязкость.

2) Свойства нитроцеллюлозы как взрывчатых веществ

Сухая нитроцеллюлоза очень чувствительна к удару и трению. Детонация может быть вызвана ударом стальным предметом, ружейной пулей при выстреле.

Нитроцеллюлоза с повышенной влажностью малочувствительны к удару. При замерзании влажных нитратов целлюлоз чувствительность к удару резко увеличивается.

3) Растворимость нитроцеллюлозы

Нитроцеллюлоза низкой вязкости растворяется в определенных растворителях, тогда как нитроцеллюлоза с высокой вязкостью только набухает в этом растворителе.

Нитроцеллюлоза хорошо растворяется во многих органических растворителях: спиртоэфирной смеси, ацетоне, этилацетате, частично в этиловом спирте. Кетоны, сложные эфиры растворяют при комнатной температуре нитроцеллюлозу с различным содержанием азота и вязкостью.

Низшие спирты - этиловый и метиловый - являются растворителями ограниченного действия. В этиловом спирте нитроцеллюлоза образует растворы лишь при содержании в ней 10,7-11,1% азота при низкой вязкости.

Растворяющее действие метилового спирта, как и этилового, зависит от степени этерификации нитроцеллюлозы. Однако метиловый спирт в отличие от этилового полностью растворяет многие нитраты целлюлозы даже при комнатной температуре с содержанием азота менее 12,6%. Повышение температуры до 1000С практически не влияет на растворимость нитроцеллюлозы в этиловом и метиловом спиртах.

Растворимость нитроцеллюлозы с содержанием азота 11,82-12,7% в труднолетучих растворителях (нитроглицерине, нитроксилитане, нитродигликоле) незначительна и составляет при комнатной температуре не более 1%, с повышением температуры до 80-900С растворимость нитроцеллюлозы увеличивается.

4) Вязкость нитроцеллюлозы

Вязкость раствора нитроцеллюлозы является основным требованиям к технологическому процессу их получения, которая предопределяет физико-механические свойства нитроматериалов, покрытий и пленок на основе нитроцеллюлозы.

Уменьшение вязкости облегчает формирование порохового шнура, ускоряет и улучшает пластификацию пороховой массы, снижает расход растворителя.

Однако очень низкая вязкость нитроцеллюлозы уменьшает механическую прочность пороха.

При хранении нитроцеллюлозы при 200С условная вязкость не изменяется, при повышении температуры до 40-450С снижается. С повышением температуры условная вязкость всех видов нитроцеллюлозы уменьшается, с понижением температуры - повышается.

Не рекомендуется смешение разных партий нитроцеллюлозы для получения средней условной вязкости. При смешении нитроцеллюлозы с различной вязкостью ухудшаются физико-механические характеристики смеси по сравнению с исходными продуктами.

5) Химическая стойкость нитроцеллюлозы

Нитроцеллюлоза химически стойкая, но на ее стойкость сильно влияет содержание в ней связанной и свободной серной кислоты. Связанная серная кислота находится в виде смешанных серно-азатных эфиров. Свободную серную кислоту, находящуюся внутри волокна нитроцеллюлозы, называют «закапсюлированной» кислотой.

Серно-азотные эфиры легко разрушаются в процессе стабилизации нитроцеллюлозы в нейтральной или слабокислой среде. Для удаления «закапсюлированной» серной кислоты требуются более длительные щелочные варки, массовая доля щелочных растворов не должна превышать 0,02-0,03%.

При увеличении температуры до 90-1000С удаление «закапсюлированной» серной кислоты происходит с большой скоростью.

Основные требования к коллоксилину представлены в табл. 1

Таблица 1 - Требования к коллоксилину «Н»

Показатели

Объемная концентрация окиси азота, мл NO/гр

Растворимость в этиловом спирте, %,

Растворимость в спиртоэфирной смеси, %, не менее

Вязкость условная, 0Э

Химическая стойкость, мл NO/гр, не более

Щелочность, %, не более

Массовая доля золы, %, не более

Массовая доля влаги, %, не менее

Степень измельчения по методу просеивания, %:

Остаток на сите 063, не более

Остаток на сите 016, не более

Засорение коллоксилина посторонними включениями, видимыми на глаз (щепа, окалина)

Не допускается

Готовая нитроцеллюлоза (в виде водной взвеси) хранится в емкостях и транспортируется по массопроводу с помощью массонасоса.

Отжатая нитроцеллюлоза хранится на складе в упакованном виде в мягкой таре. Хранить нитроцеллюлозу можно только в увлажненном состоянии на деревянных стеллажах, температура воздуха в помещении должна быть 50С, относительная влажность не менее 65%. Нитроцеллюлоза при хранении должна быть защищена от воздействия нагревательных приборов.

Транспортируется крытым автомобильным, речным или железнодорожным транспортом.

2.2 Характеристика сырья и материалов

Хлопковая целлюлоза марки ХЦ [С6Н7О2(ОН)3]n ГОСТ 595-79 является основным компонентом для получения коллоксилин Н.Основные требования к целлюлозе представлены в табл. 2

Таблица 2 - Требования к хлопковой целлюлозе

Показатели

Количество непронитрованного остатка после 5- минутной нитрации, %, не более

Смачиваемость (поглощение водой навеской целлюлозы в 15 г), г, не менее

Растворимость в 3%-ном растворе едкого натра, %, не более

Впитываемость по воде, мм, не менее

Плотность прессования целлюлозы в кипах, кг/м3

Разрывная длина, м, не менее

Влажность при поставке, %, не более

Транспортируется железнодорожным или автомобильным транспортом. Хранится строго по партиям в закрытом не отапливаемом складе. Срок хранения - 1 год со дня изготовления в упаковке изготовителя.

Нитрующая смесь (рабоче - кислотная смесь РКС) состава:

Регенерированная азотная кислота собственного изготовления 94% НNO3 ТУ 84-7507808.32-92 используется для приготовления рабочих кислотных смесей. Это бесцветная жидкость с плотностью 1520 кг/м3, температура кипения 82,60С, температура плавления -41,60С. Является сильным окислителем. Не горюча, не взрывоопасна. Основные требования к азотной кислоте представлены в табл. 3

Таблица 3 - Технические требования

Показатели

Молекулярная масса

Вязкость при 200С, мПас

Плотность при 150С, кг/м3

Удельная теплоемкость при 200С, кДж/(кгК)

Температура, 0С:

Кипения

Плавления

Парциальное давление паров над кислотой с массовой долей 100%, Па, (мм.рт.ст.):

Удельная теплота, Дж/моль:

Плавления

Испарения

Разбавления

Меланж кислотный ГОСТ 1500-78 - смесь концентрированной азотной кислоты (89%) с концентрированной серной кислотой (7,5%) при их соотношении около 91. используется для приготовления рабочих кислотных смесей. Транспортируется железнодорожным транспортом. Срок хранения - 1 месяц со дня изготовления.

Регенерированная серная кислота 92% собственного изготовления Н2SO4 ТУ 84-7507808.32-92 используется для приготовления рабочих кислотных смесей. Это маслообразная, тяжелая жидкость без запаха и цвета с плотность 1830 кг/м3, температура кипения 2800С, температура плавления 10,30С.

Основные требования к серной кислоте представлены в табл.4

Таблица 4 Технические требования к серной кислоте

Срок хранения - 1 месяц со дня изготовления в емкостях из нержавеющей кислотостойкой стали

Отработанна кислотная смесь после отжима на центрифуге состава:

· азотная кислота - 20,0-28,0%

· вода - 17,0-19,0%

· серная кислота - 63-53%

Используется для приготовления рабочих кислотных смесей.

3. ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕС ПРОИЗВОДСТВА

Технологический процесс производства нитроцеллюлозы состоит из следующих стадий:

Подготовка целлюлозы;

Приготовление рабочей смеси кислот;

Нитрация;

Кислотоотжим.

3.1 Описание технологической схемы

Подготовка целлюлозы

Подготовка целлюлозы марки ХЦ заключается в механической обработке с целью придания целлюлозе хорошей смачиваемости нитрационными кислотными смесями, а также для облегчения транспортировки по пневмопроводу.

Механическая обработка целлюлозы состоит в ее измельчении, рыхлении и сушки.

Измельчение с одновременным рыхлением ведется на кипорыхлителях, куда целлюлоза в кипах подается со склада в ручную с использованием тележки.

Целлюлоза у кипорыхлителя освобождается от упаковки и вручную загружается на ленточный транспортер, который подает целлюлозу к барабанам кипорыхлителя. Целлюлоза захватывается зубьями барабанов, измельчается и разрыхляется.

Разрыхленная целлюлоза через конфузорно-диффузорную воронку попадает в пневмосушительную установку, где подхватывается потоком горячего воздуха с температурой 85-1050С и по пневмопроводу подается в бункер-дозер.

За время прохождения по пневмопроводу разрыхленная целлюлоза подсушивается до влажности не более 7%.

Транспортирующий воздух из бункер-дозера отсасывается хвостовым вентилятором, проходит камеру улова пыли и выбрасывается в атмосферу.

Приготовление рабочей кислотной смеси (РКС)

Для приготовления рабочей кислотной смеси, применяются концентрированные азотная и серная кислоты (собственного изготовления), свежие кислоты (меланж и олеум), а также отработанная кислота. Свежие кислоты перекачиваются из железнодорожных цистерн кислотными насосами в хранилище для кислот. Приготовление РКС производится в горизонтальных смесителях. При изготовлении РКС в смеситель сначала заливается отработанная кислота, предварительно отфильтрованная в кислотных фильтрах, потом заливаются свежие кислоты. Свежие кислоты из хранилищ кислотным насосом закачиваются в мерники, откуда самотеком сливаются в смеситель. Содержимое в смесителе перемешивается не менее 45 мин. После чего кислотным насосом закачивается в расходный бак, откуда через кожухотрубный теплообменник самотеком поступает на фазу нитрации. В теплообменнике происходит подогрев РКС в зависимости от заданной температуры нитрации. По трубкам движется рабочая кислотная смесь, а в межтрубном пространстве горячий теплоноситель - вода. Подогрев кислотной смеси производится горячей водой, подаваемой из бака горячей воды насосом. Подогрев воды в баке производится острым паром. После теплообменника вода поступает обратно в бак горячей воды.

Нитрация

Рабочая кислотная смесь с температурой 28-360С из теплообменника самотеком поступает в нитратор-дозер при работающих мешалках через кольцевую оросительную систему, заполняя его на 1/3 объема. После открытия шибера автоматически включается электродвигатель шнека - дозатора и начинается загрузка целлюлозы.

По окончании загрузки целлюлозы уровень нитрующей кислотной смеси доводится до половины верхней лопасти мешалки для полной смачиваемости целлюлозы и исключения разложения, после чего прекращается подача РКС в нитратор-дозер. Происходит предварительная нитрация в течение 28 мин. (сумма на 4 нитратора-дозера). Затем масса из нитраторов-дозеров периодически сливается в емкость для окончательной нитрации. В емкости нитроцеллюлоза постоянно перемешивается. Из емкости реакционная масса питателем непрерывно подается в центрифугу.

Кислотоотжим

Реакционная масса по питающей трубе поступает в центрифугу, где происходит отжим нитроцеллюлозы от нитрующей смеси.

Осадок при помощи толкателя выгружается в кожух и транспортируется водой по массожелобу в мутильник, откуда после промывки до остаточной кислотности 1% при помощи массонасоса поступает на фазу стабилизации.

Отработанная кислота после отжима на центрифуге самотеком поступает в сборник отработанных кислот, откуда насосом закачивается в фильтр отработанной кислоты.

Избыток отработанной кислоты самотеком поступает в смеситель для приготовления рабочей кислотной смеси.

Часть кислоты из фильтра используется для подачи в центрифугу для исключения разложения.

Для промывки центрифуги используется вода, которая очищается в коллоксилиновых фильтрах, а также предусмотрен обдув центрифуги сжатым воздухом и воздухом от приточной вентиляции.

Нитрозные газы из всех аппаратов через газоходы направляются на очистку в абсорбционную установку. Так же используется каплеуловитель с целью исключения отложения частиц массы на внутренней стенке газохода центрифуги.

4. МЕРОПРИЯТИЯ ПО ПОВЫШЕНИЮ КАЧЕСТВА ПРОДУКЦИИ

Основные факторы, влияющие на процесс нитрации, и тем самым на качество нитроцеллюлозы приведены в табл. 5.

Таблица 5 - Основные факторы, влияющие на процесс нитрации

Наименование фактора

Характеристика

Важнейший фактор, определяющий степень нитрации целлюлозы. Увеличение содержания воды, повышает растворимость нитроцеллюлозы в спирто - эфирной смеси и понижает ее вязкость

Соотношение азотной и серной кислот

Добавка серной кислоты, наряду с водовытесняющим действием, вызывает набухание волокна целлюлозы. Соотношение серной и азотной кислот в нитрующей смеси влияет на степень и на скорость нитрации целлюлозы. С возрастанием количества серной кислоты, скорость реакции падает.

Влияние окислов азота на процесс нитрации

С увеличением содержания окислов азота в разбавленных нитрующих смесях падает выход, уменьшается степень нитрации

Температура нитрации

Более высокая температура способствует увеличению скорости реакции и в тоже время увеличению нежелательных процессов гидролиза и окисления

Модуль ванны

При большем модуле ванны получается более равномерно нитрованный продукт

Влажность исходной целлюлозы

Во избежании разбавления кислотной смеси водой целлюлозу следует подсушить

Качество и форма целлюлозы

Чистота и физическая форма исходного материала оказывает большое влияние на течение процесса нитрации и на получение результата

5. РАЗРАБОТКА ПРОЕКТИРУЕМОЙ ФАЗЫ

5.1 Теоретические основы процесса

Процесс центробежное фильтрование в центрифугах непрерывного действия протекает в три этапа. Первый этап - фильтрование с образованием и формированием осадка. Второй этап - радиальное движение условной поверхности раздела и частичное стекание жидкости. Третий этап - удаление из осадка жидкости, удерживаемой капиллярными силами.

В зависимости от гранулометрического состава осадка, концентрации суспензии, ее расход, в пульсирующих центрифугах наблюдается три режима работы: нормальный, переходной и режим захлебывания.

Накопление и формирование осадка происходит во время прямого и обратного ходов первого каскада ротора в зоне фильтрования. При прямом ходе обечайки первого каскада освобождается фильтрующая перегородка, на которой начинается интенсивное фильтрование суспензии с образованием осадка. Кроме того, в эту зону тыльной стороной уравнительного кольца сбрасывается часть ранее образованного осадка.

Для нормальной работы центрифуге расход и концентрация суспензии должны поддерживаться таким образом, чтобы свежая порция суспензии не размывала ранее сформированный и передвинутый в зону отжима слой осадка. При превышении расхода или при недостаточной концентрации может произойти прорыв суспензии до края ротора и наступит режим захлебывания.

При обратном ходе обечайки фильтрование суспензии продолжается. Решающую роль в этой фазе второго этапа играет толщина слоя осадка, образованного ранее. Осадок вначале несколько спрессовывается толкателем, а затем начинает двигаться по всей длине каскада. Такое движение возможно только в том случае, если толщина слоя осадка, накопленного на первом этапе, равна или несколько превосходит толщину слоя осадка в зоне отжима.

Если количество поступившей в центрифугу твердой фазы окажется недостаточным, чтобы обеспечить толщину осадка, необходимую для его продвижения, то толкатель будет сжимать осадок в зоне фильтрования до тех пор, пока его толщина не сравняется с толщиной слоя осадка в зоне отжима.

Эти условия соответствуют переходному режиму, который в пульсирующих центрифугах является недоступным.

При разделении суспензии на пульсирующей центрифуге на каждой последующей ступени ротора обезвоживание начинается с того содержания влаги, с которой осадок покинул предыдущую ступень, и проходит при большем факторе разделения. Переход осадка с одного каскада на другой сопровождается разрушением сложившейся структуры пор, что интенсифицирует процесс обезвоживания, поэтому на этих центрифугах достигается лучшая степень обезвоживания осадка, чем на однокаскадной центрифуге при той же производительности.

5.2 Характеристика основного и вспомогательного оборудования

5.2.1 Характеристика основного оборудования

Центрифуга 1/2 ФГП-809К-05 - двухкаскадная фильтрующая горизонтальная непрерывного действия с пульсирующей выгрузкой осадка предназначена для кислотоотжима нитроцеллюлозы.

Техническая характеристика центрифуги представлена в табл.6

Таблица 6 Техническая характеристика центрифуги

Показатели

Наибольшая частота вращения ротора, об/мин

Фактор разделения

Число двойных ходов толкателя в минуту, не более

Величина хода толкателя, мм

Мощность основного электродвигателя, кВт

Мощность электродвигателя маслонасоса, кВт

Масса центрифуги, кг

Габариты, мм

Материал, соприкасающийся с обрабатываемой суспензией

сталь 12Х18Н10Т

Центрифуга представляет собой фильтрующую машину непрерывного действия. Выполнена она в негерметичном исполнении. Основным рабочим органом является двухкаскадный цилиндрический ротор. Первый каскад меньшего диаметра (800 мм) посажен на сплошной вал и совершает как вращательное, так и возратно - поступательное движение относительно второго каскада, имеющего больший диаметр (887 мм).

Представляют собой устройство, преобразующий постоянное или переменное напряжение в двигателе постоянного тока. Преобразователь управляет электрическим двигателем и регулирует скорость вращения двухкаскадного цилиндрического ротора центрифуги путем изменением частоты напряжения питания, подаваемого на двигатель

Второй каскад ротора посажен на полый вал и совершает только вращательное движение со скоростью 1200 об/мин. вместе с первым каскадом от электродвигателя мощностью 30 кВт.

Внутри первого каскада ротора укреплены приемный и защитный конуса, подведена труба питания. На приемном конусе установлено уравнительное кольцо, служащее для формирования слоя осадка. На защитном конусе установлено съемное кольцо для перемещения осадка вдоль ротора.

Фильтрующей перегородкой является колосниковое сито с шириной щели 0,25 мм. С целью устранения попадания фильтрата и нитрозных газов в область между задней торцевой крышкой кожуха и кольцевой перегородкой, имеющий зазор в нижней ее части, последний перекрыт установкой сегмента.

Работа центрифуги заключается в следующем. Нитроцеллюлоза поступившая по трубе питания в приемный конус перемещаясь по внутренней его поверхности и приобретает скорость вращения ротора попадает на сито первого каскада и где за счет центробежной силы отработанная кислота уходит через сито и через патрубок выводится из центрифуги. Образовавшееся на сите слой нитроцеллюлозы при движение первого каскада в сторону двигателя сбрасывается с сита первого каскада на сито второго каскада на котором нитроцеллюлоза отжимается от кислоты. При движении первого каскада в сторону кожуха слой отжатой нитроцеллюлоза сбрасывается с сита второго каскада в кожух центрифуги и через патрубок приводится из центрифуги и транспортируется водой в мутильник.

Для исключения разложения нитроцеллюлоза в роторе центрифуги, на первый каскад ротора центрифуги подавать отработанную кислоту охлажденную до температуры от плюс 4 до плюс 17 по оС, на слой осадка нитроцеллюлозы в количестве от 100 до 600 л/ч,

5.2.2 Характеристика вспомогательного оборудования

Вспомогательное оборудование представлено в табл.7

Таблица 7 Характеристика вспомогательного оборудования

Наименование

Назначение

Краткие данные

Примечание

Кипорыхлитель

Рыхление хлопковой целлюлозы.

Длина - 4300 мм, высота - 1600 мм, ширина - 1500 мм. Частота вращения передних барабанов - 1200 об/мин, частота вращения заднего барабана - 1800 об/мин. Ширина ленты транспортера - 600 мм, длина ленты - 8000 мм, скорость движения ленты - 0,66 м/мин. Производительность - 830 кг/ч разрыхленной целлюлозы.

Пневмосушиль-

ная установка

Сушка и транспортировка целлюлозы в бункер - дозеры.

Диаметр пневмопровода - 450 мм, длина - 167 м.

Скорость движения воздуха - 31 м/с.

Состоит из: вентилятора В/Д ЭВ - 1М; калорифера КФСО-10; калорифера С-6;

Хранилище кислот

Хранение азотной и серной кислот, меланжа, олеума.

Диаметр - 3000 мм, длина - 9000 мм. Вместимость - 63,5 м3.

Емкость горизонтального вида.

Мерник для кислот

Дозирование кислот.

Диаметр - 1600 мм, высота - 2200 мм. Вместимость - 4,3 м3.

Смеситель

Приготовление рабочих кислотных смесей.

Диаметр - 3000 мм, длина - 9000 мм. Вместимость - 60 м3. Частота вращения мешалок - 285 об/мин.

Емкость горизонтального вида. Имеются две пропеллерные мешалки.

Бак расходный

Напорная емкость для подачи рабочих кислотных смесей в нитратор - дозеры.

Диаметр - 1610 мм, длина - 5700 мм. Вместимость - 11,5 м3.

Теплообменник

Темперирование рабочих кислотных смесей.

Диаметр - 600 мм, длина - 3588 мм. Поверхность нагрева - 32 м2.

Количество труб - 98 шт. размером 383 мм.

Бак горячей воды

Подогрев воды для теплообменника.

Диаметр - 2400 мм, высота - 1700 мм. Вместимость - 7,6 м3.

Подогрев осуществляется острым паром.

Бункер - дозер

Прием и дозирование измельченной, разрыхленной и высушенной целлюлозы.

Объем бункера - 50 м3, длина - 5460 мм, ширина - 4800 мм, высота - 9120 мм. Частота вращения ворошителя - 7,5 об/мин, частота вращения центральной мешалки - 12,5 об/мин. Мощность отдельного привода - 13 кВт.

Прямоугольный бак с закругленными углами. Внутри имеется 5 валов: 1- центральный (ворошитель), 4 - шнековые мешалки.

Нитратор - дозер

Смачивание целлюлозы кислотной смесью.

Предварительная нитрация.

Диаметр максимальный - 1340 мм, диаметр минимальный - 1120 мм, высота - 1500 мм, рабочий объем - 1,08 м3.

Вместимость - 1,2 м3. Частота вращения мешалок - 37 об/мин.

Имеются 2 шестнадцати - лопастные мешалки.

Прием реакционной массы из нитратор - дозеров. Окончательная нитрация. Подача нитроцеллюлозы в центрифугу.

Вместимость - 6 м3. Частота вращения мешалки - 32 об/мин.

Имеется одна лопастная мешалка.

Питатель свободно-вихревой

Подача реакционной массы в центрифугу.

Напор - 5 м, частота вращения вала - 600-1200 об/мин. Производитель - ность - 8-18 м3/час.

Коллоксилино-вый фильтр

Фильтрация воды для подачи в центрифугу.

Диаметр - 1030 мм, высота - 1835 мм. Высота слоя коллоксилина - 0,5 м.

Сборник отработанных кислот

Прием отработанных кислот из зоны нитрации.

Диаметр - 2000 мм, высота - 1800 мм. Вместимость - 5,65 м3.

Фильтр для отработанных кислот

Улов нитроцеллюлозы из отработанных кислот.

Диаметр корпуса - 1600 мм, диаметр конуса - 1500 мм, высота - 1600 мм. Диаметр отверстий - 1,5 мм, шаг - 3,5 мм. Вместимость - 3 м3.

Имеется перфорированная сетка.

Массожелоб

Транспортировка водной взвеси нитроцеллюлозы в мутильник.

Мутильник

Прием водной взвеси нитроцеллюлозы.

Диаметр - 3000 мм, высота - 1500 мм. Частота вращения мешалки - 300 об/мин. Вместимость - 10,5 м3.

Имеется одна пропеллерная мешалка.

Центробежный насос типа К

Для подачи воды на производство.

Производитель -ность - 160 м3/час

Камера для улова пыли

Очистка транспортирующего воздуха от пыли целлюлозы.

Длина - 3970 мм, ширина - 3850 мм, высота - 2600 мм.

Вентилятор хвостовой

Для отсоса пыли целлюлозы из бункер - дозеров.

Производитель -ность - 10000-11000 м3/час.

Кислотный насос марок ХН - 3,

Для перекачки кислот, а также кислотной рабочей смеси и отработанных кислот.

Производитель -ность - 500-1000 л/мин (19,5 м3/час)

Массонасос марки ПЭМ

Для транспортировки водной взвеси нитроцеллюлозы.

5.3 Ведение технологического процесса на фазе

5.3.1 Подготовка оборудования к работе

Подготовка к работе заключается в полном осмотре центрифуги на отсутствие посторонних предметов в роторе и кожухе, в проверке работы приточно-вытяжной вентиляции, давлении сжатого воздуха.

Перед пуском необходимо проверить герметичность фланцевых соединений обвязочных трубопроводов, работу тиристорного преобразователя, манометра, термометра маслосистемы, а также свободное проворачивание ротора центрифуги и вала маслосистемы от руки.

5.3.2 Пуск оборудования и технологические режимы

После осмотра центрифуги и коммуникаций, приступить к пробному пуску маслосистемы. Запуск центрифуги осуществляется от станции управления. Электродвигатель привода центрифуги включать только после пуска электродвигателя насоса. Включить электродвигатель привода маслонасоса, затем включить электродвигатель привода центрифуги. Проверить работу центрифуги на холостом ходу в течение 30 мин с целью проверки отсутствия заеданий в лабиринтах, наличия пульсаций толкателя и взаимодействие узлов и деталей.

После чего можно начинать загрузку суспензии. Подачу суспензии необходимо производить равномерно во избежание вибрации центрифуги и выброса неотфугованной кислоты в приемник отжатой нитроцеллюлозы. Тиристорным преобразователем регулировать скорость ротора.

Суспензия поступает по питающей трубе в приемный конус. Перемещаясь по внутренней поверхности приемного конуса, суспензия приобретает скорость равную скорости вращения ротора, и попадает на сито первого каскада, где за счет центробежной силы кислота проходит через сито, и выводится из центрифуги в сборник отработанной кислоты.

Образовавшейся на сите слой нитроцеллюлозы при движении первого каскада в сторону двигателя сбрасывается толкателем на сито второго каскада, на котором нитроцеллюлоза отжимается до требуемой кислотности (39,5%). При движении первого каскада в сторону кожуха слой отжатой нитроцеллюлозы сбрасывается с сита второго каскада в приемник осадка и транспортируется водой в мутильник по массожелобу.

5.3.3 Остановка оборудования

При остановке центрифуги следует прекратить подачу суспензии, выключить электродвигатель привода центрифуги, прекратить подачу промывной жидкости. После остановки центрифуги выключить электродвигатель привода маслонасоса, после чего можно приступать к чистке аппарата.

Промывку передней части кожуха в течение 3-5 мин. осуществляют подачей воды в центрифугу для смыва остатков массы в мутильник. Затем отключить подачу воды, открыть крышку кожуха центрифуги.

Вручную при помощи деревянного скребка очистить ротор от осадка, убрать налипшую массу в приемнике и с двух каскадов. После очистки ротора вновь запустить центрифугу и с помощью промывной системы и шланга промыть ротор и кожух, особенно с тыльной части ротора.

После промывки остановить центрифугу, прекратить подачу воды.

Промывку центрифуги производить при работе вытяжной вентиляции с соблюдением мер безопасности и средств индивидуальной защиты.

Поддержание заданной температуры масла в маслосистеме осуществляется подачей холодной воды в оребренный теплообменник.

5.3.4 Неполадки в работе оборудования

В таблице 8 приведены основные неполадки центрифуги 1/2 ФГП-809К-05 и способы их устранения

Таблица 8 Основные неполадки центрифуги 1/2 ФГП-809К-05 и способы их устранения

Возможные неполадки

Причины неполадок

Способы устранения

Вибрация центрифуги

Неравномерная подача нитроцеллюлозы

Отрегулировать подачу нитроцеллюлозы, изменив производительность питателя.

Забился конус ротора продуктом

Увеличено количество подачи нитроцеллюлозы

Остановить работу центрифуги, прочистить конус ротора.

Остановился толкатель

Тыльная часть ротора забита осадками

Прекратить подачу продукта и промыть тыльную часть ротора

Забивка полости между приемным и защитным конусом

Резкое увеличение подачи нитроцеллюлозы

Очистить полость между приемным и защитным конусом.

Слой нитроцеллюлозы не набирается до уравнительного кольца

Резко снизилась концентрация продукта

Уменьшить частоту хода толкателя. Увеличить частоту вращения вала питателя

5.4 Контроль технологического процесса на фазе

Данные для контроля технологического процесса на фазе представлены в табл.9

Таблица 9 Контроль технологического процесса на фазе

Наименование операции

Место расположения контрольной точки

Наименование контролируемого показателя

ГОСТ, марка контрольно-измерительного прибора

первичный

вторичный

Сушка целлюлозы

Пневмо-линия перед воронкой

Температура воздуха

Автоматический мост.

ГОСТ 7164-78

Предел измерений от 0 до 1800С. Класс точности - 0,5.

Паропровод

Давление пара

Манометр

ГОСТ 2405-88

Предел измерений от 0 до 10 кгс/см2. Класс точности - 1,0.

Нитрация

Расходный бак

Термопреобразова-тель сопротивления

ГОСТ 6651-84

1. Преобразователь ГОСТ 13384-93 Предел измерений от 0 до 500С. Класс точности - 0,6.

2. Показывающий прибор М-1830К

ТУ 25-04-931-78

Диапазон от 0 до 5 мА. Класс точности - 0,5.

Уровень рабочей кислотной смеси

Пьезометрический датчик

Манометр НПМ-52 ГОСТ 2405-88

Диапазон измерений от 0 до 250 МПа. Класс точности - 2,5.

Теплообмен-

Температура рабочей кислотной смеси

Термометр стеклянный

ГОСТ 27544-84

Термопреобразо-ватель сопротивления ГОСТ 6651-84

ПреобразовательГОСТ 13384-93

Предел измерений от 0 до 500С. Класс точности - 0,6.

Бак горячей воды

Температура воды

Термопреобразова-тель

ГОСТ 6651-84 Предел измерений от 0 до 1000С. Класс точности - 0,5.

Преобразователь

ГОСТ 13384-93

Предел измерений от 0 до 1000С.

Класс точности - 0,6.

Бункер-дозер

Давление воздуха

Напоромер НПМ-52

Предел измерений от 0 до 80 мм.вод.ст.

На вводе в нитратор-дозер

Температура рабочей кислотной смеси

Термометр стеклянный технический ГОСТ 28498-90 Предел от 0 до1000С.

Нитрация

Нитратор-дозер

Уровень взвеси

Дифманометр

ТУ 25-02-1595-74

Предел измерений от 0 до1600кгс/см2.

Класс точности - 1,0.

Миллиамперметр

ТУ 25-04-931-78

Предел измерений от 0 до 5 мА. Класс точности - 0,5.

Емкость окончательной нитрации

Уровень реакционной массы

Датчик давления

Метран-55 ЛМК-351

ТУ 4212-009-12580824-02

Класс точности - 0,5.

Регистратор технологический многоканальный РМТ- 49ДМ

ГОСТ 9999-94

Контроль разложения нитроцел-

Излучатель ВБО-М18

ГОСТ Р 50030.5.2-99

Приемник ВБО-18

ГОСТ Р 50030.5.2-99

Фильтр отработанных кислот

Нижний уровень реакционной массы

Датчик ЕТ-77

ТУ 4278-011-1219-600-01

Сигнализатор уровня СДУ-512Н

ТУ 4218-014-121960-08-05

Нитрация с использовани-ем центрифуги

Центрифуга

Расход реакционной массы

Расходомер - счетчик электро-

магнитный ЭРСВ-011

ТУ 4213-041-44327050-00

Класс точности - 0,5.

Измеритель - регулятор одноканальный

ГОСТ 12.2.007.0-75

Диапазон измерений от 4 до 20 мА. Класс точности - 0,5.

Регулятор - измеритель

ТУ 4218-018-00226253-02

Диапазон измерений от 4 до 20 мА. Класс точности - 0,5.

Диапазон измерений от 4 до 20 мА. Класс точности - 0,5.

Регулятор - измеритель

ТУ 4218-018-00226253-02

Диапазон измерений от 4 до 20 мА. Класс точности - 0,5.

Сборник отработанных кислот

Сборник отработанных кислот

Контроль уровня отработанных кислот

Датчик реле - уровня РОС-301

ГОСТ 15150-69

Промывка нитро-целюллозы

Мутильник

Контроль уровня водной взвеси

Датчик реле - уровня РОС-301

ГОСТ 15150-69

Расход кислоты

Расходомер - счетчик электро-магнитный

ТУ 4213-041-44327050-00

1. Измеритель - регулятор одноканальный

ГОСТ 12.2.007.0-75

Диапазон измерений от 4 до 20 мА. Класс точности - 0,5.

Нитрация с использовани-ем центрифуги

Центрифуга

Контроль скорости вращения ротора

Тиристорный преобразователь ТП-ДПТ

ГОСТ 15133-77

6.АВТОМАТИЦИЯ И МЕХАНИЦИЯ ПРОЦЕСОВ

Для обеспечения безопасного ведения и контроля технологического процесса смонтированы следующие автоматические блокировки:

1. остановке электродвигателя питателя при:

ѕ остановке электродвигателя центрифуги;

ѕ превышении нагрузки на электродвигатель питателя;

ѕ снижение давления воды после коллоксилиновых фильтров до значения менее 0,15 МПа (1,5 кгс/см2);

2. отключение электродвигателя центрифуге при:

ѕ открытии крышки центрифуги;

ѕ отключении электродвигателя маслонасоса.

Так же смонтирована световая и звуковая сигнализация, которая срабатывает при:

ѕ повышении нагрузки на электродвигатель питателя;

ѕ достижении верхнего, верхнего аварийного, нижнего уровня в сборнике отработанных кислот;

ѕ повышении температуры масла в маслосистеме более 450С;

ѕ повышении давления масла в маслосистеме центрифуги более 2 МПа (20 кгс/см2);

ѕ снижении давления воздуха в магистрали менее 0,3 МПа (3 кгс/см2);

ѕ открытии клапана на подаче кислоты из фильтра отработанных кислот в центрифугу;

ѕ открытии шарового крана с пневмоприводном на подачу массы из емкости в центрифуге;

ѕ открытии клапана на подаче кислоты из фильтра отработанных кислот в ороситель емкости;

ѕ забивке массопровода перед центрифугой;

ѕ срабатывании датчиков, контролирующих начало разложения нитроцеллюлозы в емкости и в центрифуге.

Краткая характеристика приборов автоматизации представлена в табл.10

Таблица 10 Характеристика приборов автоматизации

Тип приборов

Характеристика прибора

Измеряемая величина

Место установки

Характеристика среды

Манометр электро-контактный

ГОСТ 13717-84

Предел измерения - 0-2,5 МПа. Класс точности - 1,5.

Давление масла

Маслосистема

Манометр

ГОСТ 2505-88

Предел измерений - 0-0,6 МПа. Класс точности - 1,5.

Давление

Лабиринт

центрифуги

Термопреобразо-ватель сопротивления НСХ-50М

ГОСТ 6651-94

Первичный прибор

тура масла

Маслосистема

Прибор для измерения температуры

Вторичный прибор. Предел измерений - 0-1000С. Класс точности - 1

тура масла

Маслосистема

Тиристорный преобразователь ТП-ДПТ

ГОСТ 15133-77

Первичный прибор

Скорость вращения ротора

Электродвигатель центрифуги

7.ОТХОДЫ ПРОИЗВОДСТВА НА УЧАТСКЕ И ИХ ИСПОЛЬЗОВАНИЕ

Отходами в производстве нитроцеллюлозы являются остатки продукта при переходе с состава на другой вид целлюлозы, при разливах рабочих кислотных смесей. нитроцеллюлоза механизация сырье оборудование

С целью улова нитроцеллюлозы, попавшей на пол, в канализационных приямках установлены сетчатые корзины. Улов и чистка нитрозных газов в виде паров азотной кислоты и окислов азота, образующихся при нитрации, производится в абсорбционной установке.

Улов кислых вод происходит на станции нейтрализации. В случае попадания кислоты на пол необходимо нейтрализовать ее содовым раствором в воде, после чего промыть место разлива водой.

В процессе сушки целлюлозы образуются отходы в виде пыли целлюлозы, которая оседает на сетках камеры для улова пыли. Пыль целлюлозы ежесменно собирается волосяной щеткой в бумажные или полиэтиленовые мешки. Масса одного мешка не должна превышать 3 кг, мешки с пылью целлюлозы складируются на площадке и по мере накопления вывозятся на уничтожение. Перед отправкой на уничтожение отходы должны быть подготовлены для сжигания на установке.

Отходы в полиэтиленовых мешках должны быть вставлены в бумажные мешки или в прорезиненные мешки, или завернутые в три слоя бумаги с перевязкой шпагатом.

8.КРАТКАЯ ХАРАКТЕРИСТИКА ПРОИЗВОДСТВЕННОГО ЗДАНИЯ

Здание нитрации целлюлозы четырехэтажное, кирпичное. Здание оборудовано канализацией, водопроводом, электроосвещением, отоплением и вентиляцией. Внутреннее помещение здания разделены перегородками. Перегородки и стены выполнены из красного кирпича. Полы бетонные.

Обслуживающие площадки и лестницы к ним - металлические.

Для отвода кислотных стоков используется кислотная канализация, для отвода загрязненных вод - обычная канализация.

В производственном помещении используется общеобменная приточно-вытяжная вентиляция.

Освещение помещений осуществляется лампами накаливания, а также используются газоразрядные лампы дневного света.

Здание обогревается паровым отоплением.

9.ОХРАНА ТРУДА

9.1 Характеристика продуктов по степени опасности и токсичности

Характеристика продуктов по степени токсичности и опасности представлена в табл.11

Таблица 11 Характеристика продуктов по степени опасности и токсичности

Компоненты и сырье

Токсичность и характер воздействия на человека

Класс опасности

Хлопковая целлюлоза (аэрозоль)

При вдыхании вызывает раздражение слизистых оболочек дыхательных путей. При длительном вдыхании вызывает биссиноз.

Концентрированная азотная кислота, меланж кислотный

Токсичны. Выделяет окислы азота, при вдыхании которых вызывает отравление и оттек легких со смертельным исходом. Попадание на кожу вызывает сильные ожоги. В малых концентрациях вызывает раздражение дыхательных путей, коньюктивит и поражение роговицы глаз. Вдыхание паров азотной кислоты вызывает разрушение зубов.

Концентрированная серная кислота, олеум

Пары токсичны. Серная кислота и олеум при попадании на кожу вызывают сильный, долго незаживающий ожог. Мелкие брызги олеума при попадании в глаза могут вызвать потерю зрения. Вдыхание паров олеума приводит к потере сознания и тяжелому поражению легочной ткани.

Нитроцеллюлоза (нестабилизирован-ная)

При разложении выделяются окислы азота, при вдыхании которых происходит отравление и оттек легких со смертельным исходом.

Отработанная кислота

Токсична, так как содержит азотную и серную кислоты.

При попадании на кожу вызывает ожоги.

9.2 Характеристика здания по степени взрывоопасности и пожароопасности

По степени взрывоопасности и пожароопасности производственное здание относится к категории Г - пожароопасное.

Первичные средства пожаротушения: огнетушители марки ОП-10, ведра, ящики с песком, ломы, топоры, лопаты, пожарные краны и рукава. А так же используется АПЗ в пыльных камерах. На складе целлюлозы установлена АПС.

9.3 Мероприятия по ТБ при ведении технологического процесса

Для обеспечения нормальной работы и защиты здоровья необходимо соблюдать следующие меры:

Все оборудование и технологическая оснастка должны содержаться в чистоте и быть исправными;

Все основное и вспомогательное оборудование перед началом ремонта освобождается от продукта, тщательно промывается водой, а кислотные емкости снаружи и внутри дополнительно нейтрализуются содовым раствором;

Фланцевые соединения на кислотопроводах должны иметь защитные кожухи. Снимать кожухи разрешается только после полного освобождения кислотопроводов от кислот, продувкой сжатым воздухом;

Все основное и вспомогательное оборудование должны быть заземлены;

Размещение оборудования, продукции, рабочих мест, мест хранения оснастки должно производиться согласно технологическим планировкам;

Проходы, выходы, коридоры и подходы к первичным средствам пожаротушения не должны ничем загромождаться;

В помещениях, где ведутся работы с кислотами, должны быть ванны с содовым раствором;

В случае отравлении парами кислоты, окислами азота, необходимо немедленно вывести на свежий воздух, доставить в медпункт;

При попадании кислоты на кожу немедленно промыть место ожога обильной струей воды в течение 15 мин, нейтрализовать содовым раствором из ванны;

При попадании кислоты в глаза необходимо промыть их струей чистой воды, обработать 1% раствором питьевой соды;

Инструмент, применяемый в работе с нитроцеллюлозой должен быть из цветного металла или деревянный;

При обращении с нитроцеллюлозой запрещаются удары и трение;

Отходы нитроцеллюлозы должны храниться отдельно от годной продукции;

При появлении резких шумов, вибрации, звуков, нехарактерных для данного вида оборудования, работы необходимо прекратить;

Запрещается работать с замороженной нитроцеллюлозой;

Коэффициент заполнения емкостей кислот не должен превышать 0,8 высоты данной емкости;

Пуск кислотного насоса производить в противогазе марки «В» или «М» с коробкой;

Во время работ должна быть включена приточно-вытяжная вентиляция.

9.4 Требования к оборудованию и электрооборудованию, приборам КИП и автоматики с точки зрения ТБ

К оборудованию, электроустановкам, приборам КИПиА предъявляются самые жесткие и основные требования:

Все оборудование должно быть заземлено;

Оборудование, а также приборы КИПиА должны быть исправными;

Перед пуском оборудование нужно проверить на чистоту, чтобы не осталось конечного продукта во избежания пожаров и взрывов;

Оборудование и установки должны размещаться так, чтобы не загромождать проходы для эвакуации людей, и согласно планировке в помещении;

Подобные документы

    Применяемые материалы для изготовления корпусной мебели. Выбор сырья и материалов. Фурнитура, оборудование. Общие вопросы оборудования. Выбор основного и вспомогательного оборудования, для изготовления мебели. Технологический процесс изготовления мебели.

    контрольная работа , добавлен 19.10.2010

    Выбор и обоснование способа производства изделия из полиэтилена низкого давления, характеристика основного и вспомогательного оборудования. Технологическая схема производства. Расчет количества сырья и материалов. Составление материального баланса.

    дипломная работа , добавлен 26.03.2012

    Выбор сырья, фурнитуры и материалов для изготовления корпусной мебели. Выбор основного и вспомогательного оборудования, необходимого для изготовления шкафа. Структура технологического процесса и финансовый расчет себестоимости производства мебели.

    курсовая работа , добавлен 17.10.2010

    Характеристика и номенклатура продукции. Состав сырьевой массы. Выбор и обоснование способа производства, технологическая схема. Программа выпуска продукции и сырья, контроль качества. Выбор и расчет количества основного технологического оборудования.

    курсовая работа , добавлен 07.12.2015

    Характеристика сырья, химикатов, готовой продукции. Схема и контроль технологического процесса отбелки хвойной целлюлозы. Расчет материального и теплового баланса производства, количества устанавливаемого основного и вспомогательного оборудования.

    дипломная работа , добавлен 08.02.2013

    Назначение фасонных деталей для трубопровода, выбор и обоснование их способа производства. Характеристика готового продукта, сырья и материалов. Технологический процесс производства. Основные мероприятия по обеспечению выпуска качественной продукции.

    курсовая работа , добавлен 11.11.2015

    Анализ существующей технологии. Обоснование выбора основного металла. Выбор и обоснование технологических процессов. Последовательность сборочно-сварочных операций. Расчет и выбор режимов сварки. Фрезерование ствола колонны. Методы контроля качества.

    дипломная работа , добавлен 11.04.2015

    Выбор и обоснование способа печати. Разработка общей схемы технологических процессов печатного производства. Расчет загрузки рулонных печатных машин. Расчет годовой трудоемкости печатания блока и необходимого количества бумаги для изготовления изданий.

    курсовая работа , добавлен 23.12.2012

    Химический состав сырья для изготовления керамических изделий, характеристика глинистых и добавочных материалов. Выбор технологического оборудования и схемы производства. Сравнение пластического и полусухого методов формования керамического кирпича.

    курсовая работа , добавлен 22.03.2012

    Выбор и обоснование технологической схемы производства, подбор основного и вспомогательного оборудования. Проектирование цеха по производству мягких теплоизоляционных древесноволокнистых плит. Контроль производства и качества выпускаемой продукции.

Нитраты целлюлозы (НЦ) являются энергетической и структурной основой нитратцеллюлозных порохов и твердых топлив.

Нитратами целлюлозы называются сложные эфиры целлюлозы и азотной кислоты. Для производства нитратов целлюлозы применяют целлюлозу, которая содержится в хлопке, древесине, льне, соломе и т. п. в количестве от 92–93 % (хлопок) и до 50–60 % (древесина). Для изготовления высококачественной нитроцеллюлозы применяют чистую целлюлозу, получаемую из указанного сырья специальной химической обработкой.

Молекула целлюлозы состоит из большого числа одинаково построенных и связанных между собой глюкозных остатков С6Н10О5.

Поэтому общая формула целлюлозы имеет вид (С6Н10О5)n, где n – число глюкозных остатков.

В каждом глюкозном остатке имеется по три гидроксильные группы –ОН. Именно эти гидроксильные группы реагируют с азотной кислотой по схеме:

где m =1; 2 или 3.

В зависимости от условий нитрации могут замещаться не все гидроксильные группы, а только часть из них. По этой причине получается не одна, а несколько нитроцеллюлоз разной степени этерификации.

Строение целлюлозы нельзя выразить какой-либо определенной формулой вследствие того, что она неоднородна по величине молекул. Еще в большей мере это относится к нитратам целлюлозы, которые к тому же состоят из молекул, неоднородных по степени этерификации. Нитраты целлюлозы в зависимости от содержания азота (степени этерификации), растворимости в спиртоэфирной смеси и от степени полимеризации практически классифицируют на следующие виды: пироксилин № 1, пироксилин № 2, смесевые пироксилины марок ВА, СА, НА, пироколлодий, а также коллоксилины различных марок: Н, ВНВ, ПСВ, КП

Марки НЦ

Характеристики

Растворимость в спиртэфирной смеси, %

Вязкость, 0 Э

Пироксилин №1

Пироксилин №2

Не менее 98

Смесевой ВА

н.м. 13,0-13,1

Смесевой СА

Смесевой НА

Коллоксилин Н

13.Марки пироксилинов, используемые в производстве пп. Почему не применяют в производстве однотипные пироксилины, коллоксилины. Пояснить.

Строение целлюлозы нельзя выразить какой-либо определенной формулой вследствие того, что она неоднородна по величине молекул. Еще в большей мере это относится к нитратам целлюлозы, которые к тому же состоят из молекул, неоднородных по степени этерификации. Нитраты целлюлозы в зависимости от содержания азота (степени этерификации), растворимости в спиртоэфирной смеси и от степени полимеризации практически классифицируют на следующие виды: пироксилин № 1, пироксилин № 2, смесевые пироксилины марок ВА, СА, НА, пироколлодий, а также коллоксилины различных марок: Н, ВНВ, ПСВ, КП.

пироксилин № 2 полностью набухает в спиртоэфирной смеси и частично образует жидкий раствор. Пироксилин № 1 лишь частично набухает в растворителе, но, находясь между сольватированными частицами пироксилина № 2, становится подвижным, т. е. пироксилин № 1 и пироксилин № 2 взаимодействуют не только с растворителем, но и друг с другом. Установлено, что растворенный пироксилин № 2 является более эффективным пластификатором для пироксилина № 1, чем спиртоэфирная смесь.

Под растворимостью НЦ подразумевают количество ее, перешедшее в раствор при обработке навески (1 г) спиртоэфирной смесью (150 мл)

с соотношением компонентов 1:2 (по объему).

Пироколлодий очень хорошо пластифицируется спиртоэфирным растворителем, но из-за большой растворимости его в спиртоэфирной смеси при изготовлении порохов требуется на 25–30 % больше растворителя, чем для смесевого пироксилина с тем же содержанием азота.

Снижение растворимости смесевого пироксилина вследствие уменьшения содержания в нем пироксилина № 2 ведет к сокращению расхода растворителя. Однако при очень малом содержании пироксилина № 2 в смеси расход растворителя также возрастает. Это связано с тем, что пироксилин № 1 плохо пластифицируется спиртоэфирной смесью, поэтому необходимо повышать активность спиртоэфирной смеси путем увеличения в ней содержания эфира.

По Броунсу, наилучшей пластичностью при одном и том же расходе растворителя обладают среднеазотные пироксилины с растворимостью около 40 %.

Основную роль в набухании смесевых пироксилинов играет пироксилин № 2. Одним из основных параметров, определяющих поведение пироксилина № 2, является степень нитрации.

14.Почему в производстве ПП пироксилины необходимо пластифицировать. Пояснить подробно. Пластификаторы, используемые в производстве ПП. Опробируемые или рекомендуемые к применению. Структурные формулы этих веществ - растворителей.

Пластификаторы нитратов целлюлозы. Если бы нитраты целлюлозы были способны уплотняться до плотности 1600−1670 кг/м3 (1,60–1,67 г/см3) и формоваться при прессовании на истечение, то порох можно было бы изготовить из одного компонента – нитратов целлюлозы. Однако это невозможно. Это объясняется отсутствием для нитратов целлюлозы свойства пластичности.

Они являются твердыми веществами волокнистого строения, рыхлыми, с большим числом макро - и микропустот, заполненных воздухом, и состоят из жестких полярных макромолекул, связанных между собой довольно прочно различными силами (межпачечными и межмолекулярными) и не способных ввиду этого к перемещению одна относительно другой. Они не обладают термопластичностью даже в области высоких температур и находятся в застеклованном состоянии.

Общая энергия связи между макромолекулами по всей их длине может значительно превышать энергию связи между отдельными звеньями цепи. Поэтому оторвать одну молекулу от другой столь же трудно, как и разорвать макромолекулы на отдельные звенья.

Суммарная величина энергии межмолекулярного взаимодействия НЦ намного превосходит величину энергии теплового движения звеньев и сегментов цепных макромолекул. При нагревании НЦ разрушение химических связей происходит раньше, чем суммарное ослабление вторичных (межмолекулярных и межпачечных) связей окажется достаточным для обеспечения условий перехода вещества из стеклообразного в высокоэластичное и вязкотекучее состояние.

Было установлено, что ни давление, ни температура, ни продолжительность обработки НЦ в формующих прессах не могут привести их в пластическое состояние. Следовательно, для того чтобы придать НЦ такие свойства, которые бы определяли его текучесть под влиянием внешних деформирующих усилий, их необходимо модифицировать.

Одним из способов модификации НЦ является пластификация . Она заключается во введении в полимер различных жидкостей и твердых веществ (пластификаторов) с целью облегчения его переработки, а также с целью улучшения эластичности материала и придания ему морозо-устойчивости.

При пластификации изменяется вязкость системы, увеличивается гибкость макромолекул и подвижность надмолекулярных структур. Для коллоксилинов, пироколлодия, пироксилина № 2, смесевых пироксилинов хорошим пластификатором является смесь этилового спирта с диэтиловым эфиром. Следует отметить, что в отдельности этиловый спирт и диэтиловый эфир не являются пластификаторами НЦ.

Наиболее эффективным пластификатором всех НЦ (от коллоксилинов до пироксилинов) с наивысшей степенью этерификации являются ацетон и этилацетат. Нитроглицерин, нитродигликоль являются хорошими пластификаторами коллоксилина. Дополнительными пластификаторами являются динитротолуол, дибутилфталат.

При добавлении к пироксилинам соответствующего количества спиртоэфирной смеси получается масса, которая легко деформируется под действием внешних сил, но после снятия нагрузки в исходное состояние не возвращается, т. е. в системе имеет место большая остаточная деформация из-за пластического течения, которое, как известно, всегда осложняется развитием высокоэластической деформации.

ацетон; Этилацетат;НГЦ.

15) Наиболее важен простой, диэтиловый эфир , формула которого имеет следующий вид: (С2Н5)2О или С4Н10О . Он представляет собой бесцветную, прозрачную, очень подвижную летучую жидкость, имеющую своеобразный запах и жгучий вкус. Под воздействием света, воздуха, тепла и влаги эфир способен разлагаться, образовывая при этом токсичные альдегиды, пероксиды и кетоны, которые раздражают дыхательные пути. При температуре воды в 20 градусов растворяется на 6,5%. Хорошо смешивается с жирными и эфирными маслами, бензолом и спиртом, независимо от соотношения. Сам эфир, впрочем, как и его пары, легко воспламеняется. В определенной пропорции с кислородом или же воздухом пары диэтилового эфира, используемые для наркоза, взрывоопасны

Химические свойства Для диэтилового эфира характерны все химические свойства простых эфиров. Итак, разберемся с этим вопросом подробнее. Это довольно инертное вещество. Основное отличие от сложных эфиров – отсутствие гидролиза, правда, есть и исключения. На холоде не взаимодействует с хлоридом фосфора, металлическим натрием и многими разбавленными минеральными кислотами. Несмотря на это, концентрированные кислоты (серная и йодоводородная) даже при низких температурах разлагают эти эфиры, а нагретый металлический натрий их расщепляет. Эфир с неподеленными парами электронов взаимодействует с протоном сильной кислоты, в результате чего образуется неустойчивое оксониевое соединение: - Ацидолиз. Серная и йодоводородная кислоты, а также FeCl3 в ангидриде уксусной кислоты способны расщеплять простые эфиры. Химическая реакция выглядит так: CH3-CH2-O-CH2-CH3 + HJ → CH3-CH2-OH + J-CH2-CH3. - Реакция металлирования, получившая название реакции Шорыгина. Нагретый металлический натрий расщепляет диэтиловый эфир: C2H5–O–C2H5 + 2Na → C2H5ONa + C2H5Na - Относительная химическая инертность не препятствует эфирам при хранении на воздухе образовывать перекиси, что зачастую приводит к взрывам в конце перегонки.

Диэтиловый эфир: физические свойства Своеобразный запах, низкая температура кипения простых эфиров – свидетельство слабого межмолекулярного воздействия, а это говорит о низкой полярности и отсутствии предпосылок к образованию водородных связей. В отличие от спиртов эфирам присущи более сильные электронодонорные свойства, что подтверждается значением потенциалов ионизации. Усиление этих особенностей связано с положительным индуктивным эффектом группы атомов, получающихся из алканов при удалении атома водорода.

Температура кипения диэтилового эфира – 35,6 градуса по Цельсию (это гораздо ниже, чем у изомерных спиртов), а замерзания – 117 оС. Простые эфиры почти не смешиваются с водой. Объяснение этому довольно простое: они не способны образовывать водородные связи, поскольку их молекулы не имеют полярных связей. Плохо растворяется в воде и диэтиловый эфир, плотность которого по отношению к оксиду водорода составляет 0,714. Одной из особенностей рассматриваемого вещества является склонность к электризации. Вероятность возникновения разрядов статического электричества особо высока при переливании или сливе химсостава, в результате чего может произойти воспламенение. Пары эфира образуют с воздухом, который в 2,5 раза легче, взрывчатые смеси. Нижний предел взрываемости – 1,7%, а верхний – 49%. Работая с эфиром, не следует забывать, что его пары имеют свойство распространяться на большие расстояния без потерь способности к горению. Так что основная мера предосторожности – отсутствие вблизи открытого огня и прочих источников воспламенения. Простой эфир – малоактивное соединение, в разы менее реакционноспособное по сравнению со спиртами. Замечательно растворяет большую часть органических веществ, благодаря чему используется в качестве растворителя. Исключением не является и диэтиловый эфир. Физические свойства, равно как и химические, позволяют применять его в медицине и на производстве

Получение диэтилового эфира Простые эфиры в природе не встречаются - их получают синтетическим путем. Под воздействием кислотных катализаторов на этиловый спирт при повышенной температуре получается диэтиловый эфир (формула указана выше). Проще всего получить это вещество посредством перегонки смеси, состоящей из серной кислоты и спирта. Для этого ее необходимо разогреть до 140-150 градусов по Цельсию. Нам понадобится этиловый спирт и серная кислота (в равных пропорциях), пипетки, пробирки и газоотводные трубки. Итак, после того как оборудование и реактивы подготовлены, можно приступать к проведению опыта. В пробирку (она обязательно должна быть сухой) необходимо налить 2-3 мл смеси спирта и кислоты и медленно нагреть. Как только начнется кипение, горелка убирается, а в горячую смесь при помощи пипетки по стенке пробирки добавляется от 5 до 10 капель этилового спирта. Протекающая реакция выглядит следующим образом: СН3-СН2-ОН (этилсерная кислота) + H2S04 СН3-СН2-OSO3H + Н2О; CH3-СН2-OSO3H + СН3-СН3-О; СН3-СН2-О-СН2-СН3(диэтиловый эфир)+ Н2SO4. Об образовании диэтилового эфира свидетельствует появившийся запах.

Состав и формула Этанол - а именно так звучит одно из его официальных названий - относится к простым спиртам. Он знаком практически всем под теми или иными наименованиями. Часто его называют просто спиртом, иногда прибавляют прилагательные "этиловый" или "винный", химики могут также назвать его метилкарбинолом. Но суть одна - С2Н5ОН.

Физические и химические свойства Этанолу присущи все общие характеристики и реакции спиртов. Он бесцветный, обладает характерными вкусом и запахом. В нормальных условиях он жидкий, переходит в твердую форму при температуре -114 оС, а кипит при +78 градусах. Плотность спирта этилового составляет 0,79. Хорошо смешивается с водой, глицерином, бензолом и многими другими веществами. Легко улетучивается, так что хранить его нужно в хорошо закрывающихся емкостях. Сам является прекрасным растворителем, а также обладает отличными антисептическими свойствами. Очень огнеопасен как в жидком, так и в парообразном состоянии. Этанол является психоактивным и наркотическим веществом, входит в состав всех спиртных напитков. Смертельной дозой для взрослого человека является 300-400 миллилитров 96 % раствора спирта, употребленного в течение часа. Эта цифра довольно условна, поскольку зависит от большого количества факторов. Для детей достаточно уже 6-30 миллилитров. Так что этанол является и достаточно эффективным ядом. Тем не менее, он широко используется, поскольку обладает рядом уникальных свойств, делающих его универсальным

Получение диэтилового эфира Простые эфиры в природе не встречаются - их получают синтетическим путем. Под воздействием кислотных катализаторов на этиловый спирт при повышенной температуре получается диэтиловый эфир (формула указана выше). Проще всего получить это вещество посредством перегонки смеси, состоящей из серной кислоты и спирта. Для этого ее необходимо разогреть до 140-150 градусов по Цельсию. Нам понадобится этиловый спирт и серная кислота (в равных пропорциях), пипетки, пробирки и газоотводные трубки. Итак, после того как оборудование и реактивы подготовлены, можно приступать к проведению опыта. В пробирку (она обязательно должна быть сухой) необходимо налить 2-3 мл смеси спирта и кислоты и медленно нагреть. Как только начнется кипение, горелка убирается, а в горячую смесь при помощи пипетки по стенке пробирки добавляется от 5 до 10 капель этилового спирта. Протекающая реакция выглядит следующим образом: СН3-СН2-ОН (этилсерная кислота) + H2S04 СН3-СН2-OSO3H + Н2О; CH3-СН2-OSO3H + СН3-СН3-О; СН3-СН2-О-СН2-СН3(диэтиловый эфир)+ Н2SO4.

  • коллоксилин (10,7 - 12,2 % азота)
  • пироксилин № 2 (12,05 - 12,4 % азота)
  • пироколлодий (12,6 % азота) - особый вид нитроцеллюлозы, впервые полученный Д. И. Менделеевым , нерастворим в спирте, растворяется в смеси спирта с эфиром.
  • пироксилин № 1 (13,0 - 13,5 % азота)
  • 1832 - французский химик Анри Браконно обнаружил, что при обработке крахмала и древесных волокон азотной кислотой образуется нестойкий горючий и взрывоопасный материал, который он назвал ксилоидин (Xyloїdine)
  • 1838 - другой французский химик, Теофиль-Жюль Пелуз , обработал подобным образом бумагу и картон и получил похожий материал, названный им Нитрамидин (Nitramidine). Низкая стабильность полученной нитроцеллюлозы не позволяла использовать её в технических целях.
  • 1846 - швейцарский химик Кристиан Фридрих Шёнбейн случайно обнаружил более практичный способ получения нитроцеллюлозы. Во время работы в кухне он пролил концентрированную азотную кислоту на стол. Для удаления кислоты химик воспользовался хлопковой тряпкой, а затем повесил её сушиться на печь. После высыхания ткань сгорела со взрывом. Шёнбейн разработал первый приемлемый способ получения нитроцеллюлозы - обработкой одной части хлопковых волокон в пятнадцати частях смеси серной и азотной кислот в соотношении 50:50. Азотная кислота реагировала с целлюлозой с образованием воды и серная кислота была необходима для предотвращения разбавления. После нескольких минут обработки хлопок удалялся из кислоты, промывался в холодной воде до удаления кислот и высушивался.
Полученный новый материал незамедлительно был применён в производстве пороха под названием ружейного хлопка (Guncotton ). Нитроцеллюлоза давала в 6 раз больший объём продуктов горения, чем дымный порох , намного меньше дыма и меньше нагревала оружие. Однако производство её было крайне опасным и сопровождалось многочисленными взрывами на производствах. Дальнейшие исследования показали, что ключевую роль в опасности производства играет чистота сырья - если хлопок не был тщательно очищен и высушен, происходили внезапные взрывы.
  • 1869 - в Англии под руководством Фредерика Августа Абеля была разработана технология с измельчением нитроцеллюлозы в специальных аппаратах- голландерах и многократными (до 8 раз) длительными промывками и сушками, каждая из которых длилась до 2 суток. Голландер представляет собой овальную в сечении ванну с закрепленными в ней поперечными ножами. Сбоку от ножей проходит вал с волнистыми дисковыми ножами. При вращении вала ножи вала проходят в промежутках между неподвижными ножами и режут волокно нитроцеллюлозы. Соотношение серной и азотной кислот в смеси было изменено до 2:1. По такой технологии удавалось получать достаточно стабильный при хранении и применении продукт.

Спустя десять лет после патентования этой технологии во всем мире начали принимать на вооружение пироксилин, сначала в качестве начинки снарядов и морских мин. Другое применение, которое коллоксилин нашел практически сразу - производство клея для заклеивания небольших ранок. За неимением пластыря (в нашем сегодняшнем понимании), этот клей достаточно быстро обрел популярность. Фактически, это была разновидность густого нитролака. Последовавшая в течение нескольких лет после этого серия взрывов на предприятиях и складах, занятых процессами с участием пироксилина, заставили пристальнее взглянуть на проблему стабилизации этого продукта. Несмотря на все сложности, с 1879 года и по сей день нитраты целлюлозы находят широкое применение в технологии энергонасыщенных соединений и многих других областях промышленности.

Получение

Лучшим сырьём для производства нитроцеллюлозы считаются длинноволокнистые сорта хлопка ручной сборки. Хлопок машинной сборки и древесная целлюлоза содержат значительное количество примесей, усложняющих подготовку и снижающих качество продукции. Нитроцеллюлозу получают действием на очищенную, разрыхлённую и высушенную целлюлозу смесью серной и азотной кислот, называемой нитрующей смесью, или «меланжем»:

Ниже приведена реакция получения тринитроцеллюлозы в лабораторных условиях:

Концентрация применяемой азотной кислоты обычно выше 77 %, а соотношение кислот и целлюлозы может быть от 30:1 до 100:1. Полученный после нитрования продукт подвергается многоступенчатой промывке, обработке слабокислыми и слабощелочными растворами, измельчению для повышения чистоты и стойкости при хранении. Сушка нитроцеллюлозы - сложный процесс, иногда совместно с сушкой применяется обезвоживание (этанолом , спирто-эфирными смесями). Практически вся нитроцеллюлоза после получения используется в производстве различных продуктов. В случае необходимости хранится во влажном состоянии с содержанием воды или спирта не ниже 20 %.

Промышленный метод получения

Варка нитроцеллюлоз при 90-95°C в проточном реакторе. При этом происходит разрушение малоустойчивых соединений и вымывание продуктов распада. Кроме того, горячая вода легче проникает в структуру нитроцеллюлозы. Недостаток этого процесса состоит в деструкции нитроцеллюлозы до продуктов низкой молекулярной массой (5-20 структурных звеньев). Поэтому, этим процессом не злоупотребляют, особенно если нужен продукт с хорошими физико-механическими свойствами (например, для пироксилиновых порохов или дистанционных трубок).

Другая технологическая тонкость стабилизации нитроцеллюлоз состоит в перекристаллизации нитроцеллюлозы из органических растворителей в присутствии раствора соды. В отличие от предыдущего процесса, этот процесс ведется при низких температурах (10-25°C), но очень продолжительное время и при интенсивном перемешивании. После стабилизации центрифугируют раствор соды, полученный раствор пироксилина в органике идет на обезвоживание и дальнейшее использование.

Для увеличения срока годности в нитроцеллюлозу (в готовом продукте) вводятся стабилизаторы химической стойкости, главным образом: централиты, дифениламин , камфору . Раньше использовали также амиловый спирт , канифоль , аминные производные нафталина и др., но они показали низкую эффективность. Главная функция стабилизаторов – связывание образующейся при разложении азотной кислоты и оксидов азота . В промышленности полученную нитроцеллюлозу транспортируют, хранят и используют в виде колоксилиново-водной взвеси (КВВ). Содержание коллоксилина в этом материале - 10-15 %, по свойствам КВВ напоминает среднее между манной кашей и густым клеем ПВА . Больше всего напоминает бумажную пульпу, но с мелким волокном.

Колоксилиново-водную взвесь после отмывки от кислот накапливают в смесителях – емкостях объемом 100-350 м3, снабженных мешалками для предотвращения оседания коллоксилина и усреднения партии. После перемешивания в течение нескольких часов отбирают пробу на уточнение свойств, главным образом молекулярной массы , содержание азота, содержание кислот и йодкрахмальную пробу на устойчивость. Для использования в чистом виде нитроцеллюлозу отделяют от воды на барабанных фильтрах, при этом влажность материала составляет около 50 %. В таком виде нитроцеллюлозу можно транспортировать в различной таре. Для дополнительного обезвоживания нитроцеллюлозу отжимают на центрифуге при 800-1000 об./мин. При этом получается нитроцеллюлоза с влажностью около 6-8 %. Дальнейшее обезвоживание проводят промывкой этиловым спиртом на специальной центрифуге. При этом спирт подается в центр барабана и двигается к периферии под действием центробежных сил. Спирт регенерируют ректификацией .

Для получения баллиститных или сферических порохов используют непосредственно колоксилиново-водную взвесь. Для производства сферических порохов можно применять и отжатую до 10 % влажности нитроцеллюлозу, при этом отдельная проблема состоит в том, что при диспергировании порохового лака в водной фазе и последующего отверждения гранул пороха приводит к капсулированию некоторого количества воды внутри пороха. Некоторую сложность в получении нитратов целлюлозы составляет высокая впитывающая способность целлюлозы при неоднородности ее структуры и плотности волокна. Это вынуждает применять 50-100-кратный избыток нитрующей смеси. Если это терпимо для лабораторий, то совершенно неприемлемо для промышленного производства.

В промышленности применяют барабанные непрерывно действующие аппараты противотока, по принципу "карусели". Суть их работы заключается в подаче целлюлозного волокна с одной стороны, а нитрующей смеси с другой, противотоком. При этом нитрующая смесь орошает плоский вертикальный барабан, заполненный целлюлозным волокном, сверху. Смесь стекает из данной секции в секцию поддона, откуда подается в следующую секцию насосом. И так до 30-40 секций. Барабан медленно вращается, в одной точке происходит непрерывная разгрузка продукта, в другой точке - загрузка целлюлозы.

© 2024 taxinnext.ru
Автомобильный портал - Taxinnext