Осциллятор тесла разрушивший дом схемы. Трансформатор тесла своими руками, простейшая схема

Многие великие изобретения фундаментально преображают общество, в котором они существуют. Люди в управляющей верхушке могут обрести еще больше могущества, если будут подавлять такие революционные технологии. Гений инженерии Никола Тесла не стал исключением. Вот его потерянные изобретения, которым была не рада элита.

Луч смерти

Никола Тесла заявлял, что изобрел «луч смерти», названный телефорсом. Это устройство способно было создавать интенсивный поток энергии, который можно было бы направлять, чтобы избавляться от вражеских самолетов, солдат и всего прочего, существование чего хотелось бы прекратить. Луч смерти так и не был построен, потому что с ним, был уверен Тесла, странам будет слишком легко уничтожать друг друга. Он знал, что такое оружие способно даже самую маленькую страну сделать великой. Ходили слухи, что это изобретение многократно пытались украсть. Все бумаги Теслы просматривали воры, но никому так и не удалось похитить тайну этого луча. Пожалуй, это и к лучшему, ведь в чужих руках такое оружие могло бы разрушить мир и стереть с лица планеты многие современные страны.

Осциллятор Теслы

В 1898 году Тесла сообщил, что построил и использует небольшой осциллятор, который своей работой заставляет дрожать все здание. Иначе говоря, устройство способно было имитировать землетрясение. Понимая потенциальную опасность такого устройства, Тесла разрушил осциллятор и приказал своим сотрудникам делать невинный вид при появлении вопросов о землетрясении. Некоторые теоретики уверены, что исследования Теслы и сейчас используются государством на Аляске для проведения секретных опытов. Проверить это невозможно, тем не менее изобретение Теслы безвозвратно затерялось и широкой общественности давно недоступно.

Система бесплатного электричества

Тесла создал и построил башню Уорденклиф, гигантскую беспроводную станцию передачи связи. Он сделал это в Нью-Йорке в начале двадцатого века. Предполагалось, что эта башня сможет распространять беспроводной сигнал по всему миру. Впрочем, у самого Теслы были другие планы. Он собирался передавать сообщения, звонки и даже изображения через Атлантику в Англию и на корабли в море, так как у него была теория, что саму планету можно использовать как передатчик. Если бы проект работал, каждый мог бы подключиться к электросети, просто воткнув в землю металлический прут. К сожалению, бесплатное электричество не принесло бы дохода. Именно поэтому мировая элита была недовольна таким изобретением. Это лишило бы энергоиндустрию прибыли. Что было бы с миром, если бы людям не нужны были уголь и нефть? Смогли бы ведущие державы удержать свою власть? В результате башню просто не стали финансировать. В 1906 году проект был заброшен, и его так и не привели в действие. Удивительно даже представлять, каким мог бы быть мир, если бы электрическая энергия действительно была бы доступна абсолютно всем и не стоила бы абсолютно ничего.

Летающая тарелка

В 1911 году Никола Тесла сообщил в интервью, что работает над антигравитационным летающим устройством. Он говорил, что у его летательного аппарата не будет крыльев или пропеллера, но оно будет способно летать по воздуху совершенно безопасно и в любом направлении. При этом устройство будет передвигаться на высокой скорости, в любую погоду и без всяких изменений из-за турбулентности или воздушных потоков. Устройство могло бы зависать в воздухе совершенно без движения даже при сильном ветре. Якобы для этого требовалась позитивная механическая энергия. Летающая тарелка Теслы управлялась свободной энергетической системой, в то время как авиация и автомобили того времени двигались на нефти и бензине. Изобретение Теслы встретило такую же судьбу, что и в предыдущей истории, — введение чего-то подобного в производство стало бы крахом для транспортных, энергетических, топливных компаний. Именно потому его появлению и препятствовали, как видим, вполне успешно.

Улучшенные самолеты

Тесла предлагал создавать самолеты, летающие на электрической энергии. Они способны были бы переносить пассажиров из Нью-Йорка в Лондон за три часа, перемещаясь в нескольких десятках километров над землей. Он предполагал, что устройства будут черпать энергию из самой атмосферы, так что им никогда не нужно было бы останавливаться для заправки. Летающие корабли не требовали бы управления и могли бы как переносить пассажиров, так и служить в качестве средств военной авиации. Тесла так и не получил признания за это свое гениальное изобретение при жизни. Тем не менее в наши дни существуют дроны, без управления переносящие оружие, сверхзвуковые самолеты и космические корабли, способные летать вокруг планеты в верхних слоях атмосферы. Есть все основания предполагать, что сотрудники ФБР попросту похитили данные об изобретении и все бумаги на этот счет после смерти Теслы. Эти слухи подтверждают и недавние отчеты ФБР.

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. Тесла Никола

ЭЛЕКТРИЧЕСКИЕ ОСЦИЛЛЯТОРЫ*

ЭЛЕКТРИЧЕСКИЕ ОСЦИЛЛЯТОРЫ*

Мало было открыто таких областей, которые оказались столь урожайными как токи высокой частоты. Их необыкновенные свойства и эффектность демонстрируемых ими явлений сразу же вызвали всеобщее внимание. Научные люди заинтересовались исследованием их, инженеры были привлечены их коммерческими возможностями, а врачи увидели в них долгожданные средства для действенного лечения телесных болезней. Со времен публикации моих первых исследований в 1891 сотни томов были написаны по этому предмету, и множество неоценимых результатов получено с помощью этого нового фактора. Эта область находится еще только во младенчестве, будущее хранит несравненно большее.

С самого начала я чувствовал необходимость сделать эффективный аппарат, отвечающий быстро растущим потребностям, и в течение восьми лет после моих первых сообщений я разработал не меньше пятидесяти типов этих трансформаторов или электрических осцилляторов, каждый из которых был законченным во всех подробностях и усовершенствован до такой степени, что я не смог бы сколько-нибудь существенно улучшить ни один из них сегодня. Если бы мной двигали практические соображения, я мог бы создать большой и прибыльный бизнес, параллельно оказывая всему миру важную услугу. Но сила обстоятельств и постоянно растущие перспективы еще больших достижений обратили мои усилия в другом направлении. И получается так, что скоро на рынок выйдут инструменты, которые, как это ни странно, были полностью завершены двадцать лет назад!

Эти осцилляторы предназначались специально для работы с постоянными и переменными осветительными цепями и для генерации затухающих и незатухающих осцилляции или токов любой частоты, объема и напряжения в широчайших пределах. Они компактны, автономны, не требуют никакого обслуживания в течение длительных периодов времени и оказываются очень удобными и полезными для таких разнообразных целей, как беспроводная телеграфия и телефония; преобразование электрической энергии; получение химических соединений путем сплавления и соединения; синтез газов; производство озона; освещение; сварка; муниципальная, больничная и бытовая санитария и стерилизация, и множество других применений в научных лабораториях и промышленных организациях. Хотя эти трансформаторы никогда ранее не описывались, общие принципы, лежащие в их основе, были полностью изложены в моих печатных статьях и патентах, в особенности за 22 Сентября 1896, и думается поэтому, что прилагаемые фотографии нескольких типов вместе с кратким объяснением дадут всю необходимую информацию.

Существенными частями такого осциллятора являются: конденсатор, катушка самоиндукции для зарядки его до высокого потенциала, контроллер цепи, и трансформатор, который возбуждается осцилляторными разрядами конденсатора. В нем есть по меньшей мере три, а обычно четыре, пять или шесть, согласованных цепей и регулировка, исполняемая несколькими способами, наиболее часто просто с помощью регулировочного винта. Пр и благоприятных обстоятельствах достижима эффективность до 85 %, то есть, такой процент подаваемой энергии можно получить во вторичной обмотке трансформатора. Хот я главное достоинство этого рода аппаратов очевидно обусловлено удивительными свойствами конденсатора, особые положительные характеристики достигаются в результате сочетания цепей с соблюдением правильных гармонических отношений и минимизации потерь на трение и других потерь, что и было одной из главных целей конструкции.

В целом, приборы эти можно разделить на два класса: один, в котором контроллер цепи содержит твердые контакты, и другой, в котором замыкание и размыкание производится ртутью. Рисунки с 1 по 8 включительно относятся к первому, а оставшиеся - ко второму классу. Первые дают заметно большую эффективность из-за того факта, что сопутствующие потери при замыкании и размыкании сведены к минимуму и резистентная составляющая коэффициента затухания очень мала. Вторые предпочтительны для тех целей, где важно получение большего выхода и большего количества прерываний в секунду. Работа мотора и конечно контроллера цепи потребляет определенное количество энергии, которое, однако, становится все менее значимым с ростом мощности машины.

На Рис. 1 показана одна из самых ранних форм осциллятора, сконструированная для экспериментальных целей. Конденсатор содержится в квадратном ящике из красного дерева, на которой смонтированы самоиндукционная или зарядная катушка намотанная, как будет показано, в два секции соединенные параллельно или последовательно, в зависимости от того, какое напряжение в подающей сети, ПО или 220 вольт. Из коробочки торчат четыре латунных колонны, которые поддерживают пластину с пружинными контактами и регулировочными винтами, а также две массивные клеммы для подключения к первичной обмотке трансформатора. Две из этих колонн служат в качестве контактов конденсатора, а пара других соединяют клеммы выключателя спереди от катушки самоиндукции с конденсатором. Первичная обмотка состоит из нескольких витков медной полосы, к концам которой припаяны короткие штыри, входящие в соответствующие клеммы. Вторичная сделана из двух частей, намотанных так, чтобы насколько возможно уменьшить распределенную емкость и в то же время обеспечить, чтобы катушка выдерживала очень высокое напряжение между ее клеммами в центре, которые соединены с пружинными контактами на двух резиновых колоннах, выступающих из первичной обмотки. Соединения цепи могут слегка варьироваться, но обычное их устройство схематически показано в Electrical Experimenter за Май на странице 89, и относится к моему осцилляторному трансформатору, фотография которого приведена на странице 16 в том же номере. Работа его проходит следующим образом: Когда выключатель включается рубильник, ток из цепи питания устремляется через катушку самоиндукции, примагничивая железный сердечник внутри и рассоединяя контакты контроллера. После этого индуцированный ток высокого напряжения заряжает конденсатор, и после замыкания контактов аккумулированная энергия высвобождается через первичную обмотку, вызывая нарастание длинной последовательности осцилляции, которые возбуждают согласованную вторичную цепь.

Устройство показало себя весьма работоспособным при проведении лабораторных экспериментов всех видов. Например, при изучении явления импеданса трансформатор был убран и в клеммы был вставлен согнутый медный прут. Он часто заменялся большой кольцевой петлей для демонстрации индуктивного эффекта на расстоянии или для возбуждения резонансных цепей в различных исследованиях и измерениях. Трансформатор, подходящий для любого желаемого эксперимента, можно легко сымпровизировать и подключить к клеммам, и таким образом было сэкономлено много времени и труда. Вопреки тому, что было бы естественно ожидать, с контактами возникало довольно мало проблем, хотя токи через них были чрезвычайно сильные, так как, при наличии соответствующих условий резонанса, большой поток возникает только когда цепь замкнута, и никаких разрушительных дуг развиться не может. Изначально я использовал платиновые и иридиевые концы, но потом заменил их на meteorite и в конце концов на вольфрам. Последний вариант удовлетворял наилучшим образом, обеспечивая работу в течение многих часов и дней без прерываний.

Рис. 2 показывает небольшой осциллятор, разработанный для определенных научных целей. Основополагающая идея состояла в том, чтобы добиться огромной производительности в течение кратковременных интервалов, после каждого из которых следует сравнительно длинный период бездействия. С этой целью использовались большая катушка самоиндукции и быстродействующий прерыватель, и вследствие такой конструкции конденсатор заряжался до очень высокого потенциала. Были получены внезапные вторичные токи и искры большого объема, особенно подходящие для сварки тонких проводов, вспышек ламп накаливания или сваривания нити ламп-вспышек, зажигания взрывчатых смесей и прочих подобных прикладных целей. Этот прибор был также адаптирован для работы от батареи, и в этом виде был очень эффективным воспламенитель для газовых двигателей, на что патент за номером 609,250 и был получен мной 16 Августа 1893.

На Рис. 3 представлен большой осциллятор первого класса, предназначенный для беспроводных экспериментов, получения Рентгеновских лучей и научных исследований в целом. Он состоит из коробки, содержащей два конденсатора одинаковой емкости, на которой поддерживаются зарядная катушка и трансформатор. Автоматический контроллер цепи, ручной выключатель и соединительные клеммы смонтированы на передней пластине бобины индукционной катушки, как и одна из контактных пружин. Конденсаторная коробка снабжена тремя контактами, из которых два внешних служат просто для подключения, а средний поддерживает контактную пластину с винтом для регулировки интервала, в течение которого цепь замкнута. Сама вибрирующая пружина, единственная функция которой - вызывать периодические прерывания, может быть отрегулирована по своей силе как и по расстоянию от железного сердечника в центре зарядной катушки четырьмя винтами, видимых на верхней пластине, так что обеспечиваются любые желаемые условия механического управления. Первичная катушка трансформатора сделана из медного листа, и подключения сделаны в точках, удобных для целей произвольного варьирования числа витков. Как на Рис. 1 ндукционная катушка намотана в две секции для адаптации прибора как для цепей на 110, так и на 220 вольт, а сделано несколько вторичных обмоток для согласования различных длин волн первичной. Выход был примерно 500 ватт с затухающими волнами примерно 50,000 циклов в секунду. На короткие периоды времени получались незатухающие осцилляции путем подвинчивания вибрационной пружины туго к железному сердечнику и разделения контактов с помощью регулировочного винта, который также исполняет функцию ключа. С этим осциллятором я провел большое количество важных исследований и он был одной из машин, которые демонстрировались на лекции перед Нью Йоркской Академией Наук в 1897.

Рис. 4 - это фотография трансформатора такого типа, который во всех отношениях похож на проиллюстрированный в выпуске Electrical Experimenter за Май 1919, на который уже давалась ссылка. Существенные части в нем такие же, расположены они похожим образом, но он был спроектирован для применения на питающих цепях более высокого напряжения, от 220 до 500 вольт и выше. Обычные настройки выполняются путем регулировки контактной пружины и перемещения железного сердечника внутри катушки индуктивности вверх и вниз с помощью двух винтов. Для предотвращения повреждений в результате короткого замыкания в провода вставлены плавкие предохранители. Прибор сфотографирован в работе, во время генерации незатухающих осцилляции от осветительной сети 220 вольт.

На Рис. 5 показана более поздняя форма трансформатора, предназначенного главным образом для того, чтобы заменить катушку Румкорфа. Для этой цели изменена первичная катушка, в ней гораздо большее количество витков, и вторичная близко с ней связана. Токи, развиваемые в последней, имеют напряжение от 10,000 до 30,000 вольт и обычно применяются для зарядки конденсаторов и работы с независимой катушкой высокой частоты. Механизм регулировки имеет несколько другую конструкцию, но, как и в предыдущем случае, можно регулировать и сердечник, и контактную пружину.

На Рис. 6 - небольшое устройство этого типа, предназначенное специально для получения озона или стерилизации. Оно необыкновенно эффективно для своего размера и может подключаться к сети 110 или 220 вольт, постоянной или переменной, второе предпочтительней.

На Рис. 7 показана фотография более крупного трансформатора данного типа. Конструкция и расположение частей такое же, как и в предыдущем случае, но в ящике находятся два конденсатора, один из которых включен в цепь как в предыдущих случаях, а второй шунтирует первичную катушку. Таким образом, в последней получаются токи огромной величины, и вторичные эффекты усиливаются соответственно. Введение дополнительной согласованной цепи дает также и другие преимущества, но регулировка усложняется, и поэтому желательно использовать такой прибор для получения токов на определенной и неизменной частоте.

Рис. 8 показывает трансформатор с вращающимся прерывателем. В ящике находятся два конденсатора одинаковой емкости, которые можно соединять последовательно и параллельно. Зарядные индуктивности сделаны в виде двух длинных катушек, сверху которых размещаются вторичные клеммы. Небольшой мотор постоянного тока, скорость которого можно менять в широких пределах, используется как привод для прерывателя специальной конструкции. В остальном осциллятор подобен показанному на Рис. 3 и его работу легко можно будет понять из вышеупомянутого. Этот трансформатор применялся в моих беспроводных экспериментах, а также нередко для освещения лаборатории с помощью моих вакуумных трубок и демонстрировался в ходе моей лекции перед Нью Йоркской Академией Наук в 1897, упоминавшейся выше. Перейдем теперь к машинам второго класса. На Рис. 9 показан осцилляторный трансформатор, состоящий из конденсатора и зарядной индуктивности, помещенных в ящик, трансформатора и ртутного контроллера цепи, конструкция которого впервые описана в моем патенте No. 609,251 от 16 Августа 1898. Он состоит приводимого в движение мотором пустотелого шкива, содержащего небольшое количество ртути, которую центробежной силой несет наружу к стенкам сосуда, и она увлекает за собой контактное колесо, которое периодически замыкает и размыкает цепь конденсатора. С помощью регулировочных винтов, находящихся над шкивом, можно произвольно изменять глубину погружения лопаток, а следовательно и продолжительность каждого контакта, таким образом регулируются интенсивность эффектов их характеристики. Этот вид прерывателя удовлетворителен во всех отношениях при работал на токах от 20 до 25 ампер. Число прерываний обычно составляет от

500 до 1,000 в секунду, но можно работать и с более высокими частотами. Объем, занимаемый прибором, составляет 10" X 8" X 10", выход - около 1/2 kW.

В только что описанном трансформаторе прерыватель сообщается с атмосферой и происходит медленное окисление ртути. Этот недостаток преодолен в приборе, показанном на Рис. 10, который состоит из перфорированной металлической коробки, в которой находятся конденсатор и зарядная индуктивность, а сверху - мотор, приводящий в действие прерыватель, и трансформатор. Ртутный прерыватель относится к типу, который надо описать, и работает на принципе струи, которая периодически входит в контакт с вращающимся колесом внутри шкива. Неподвижные части находятся в сосуде на штанге, проходящей через длинный пустотелый вал мотора, и для достижения герметичного закупоривания камеры, в которой находится контроллер цепи, используется ртутный затвор. Ток подается во внутренность шкива через два скользящих кольца, которые находятся на верху и последовательно соединены с конденсатором и первичной катушкой. Предотвращение попадания кислорода - это бесспорное преимущество, потому что исключаются окисление металла и сопутствующие проблемы, и постоянно поддерживаются безукоризненные рабочие условия.

Рис. 11 - это фотография аналогичного осциллятора с герметически закрытым ртутным прерывателем. В этой машине неподвижные части прерывателя внутри шкива находятся на трубке, через которую проходит изолированный провод, соединенный с одним контактом прерывателя, а другой находится в контакте с сосудом. Таким образом, скользящих колец удалось избежать и конструкция упростилась. Этот прибор был разработан для осцилляции меньшего напряжения и частоты, требовал первичных токов сравнительно меньшего ампеража, и использовался для возбуждения других резонансных цепей.

Рис. 12 показывает улучшенную форму осциллятора типа описанного на Рис. 10, в котором от поддерживающей штанги через полый вал мотора избавились, и устройство, накачивающее ртуть, поддерживается в своем положении за счет силы тяжести, как будет более подробно разъяснено в связи с другим рисунком. И емкость конденсатора, и первичные витки были сделаны переменными для целей получения осцилляции нескольких частот.

Рис. 13 - это фотографическое изображение другой формы осцилляторного трансформатора с герметически закрытым ртутным прерывателем, а диаграммы на Рис. 14 показывают соединения цепи и организацию частей, воспроизведенные из моего патента No. 609,245 от 15 Августа 1898, описывающего именно это устройство. Конденсатор, индуктивность, трансформатор и контроллер цепи расположены как и раньше, но последний имеет другую конструкцию, что станет ясно из рассмотрения Рис. 14. Полый шкив а укреплен на валу С, который установлен в вертикальном подшипнике, проходящем через постоянный магнит d мотора. Внутри сосуда на бесфрикционных подшипниках находится тело h из магнитного материала, которое окружено колпаком b в центре пластинчатого железного кольца на полярные участки которого 00 намотаны зарядные катушки р. Кольцо удерживается на четырех колоннах, и, когда намагничено, удерживает тело h в одном положении во врем; вращения шкива. Последний изготовлен из стали, но колпак лучше делать из Немецкого серебра, черненого кислотой, или никелированным. На теле h держится короткая трубка к, согнутая, как показано, для улавливания жидкости, когда она раскручивается, и выпускания ее на зубцы колеса, крепящегося к шкиву. Колесо показано на рисунке, контакт между ним и внешней цепью устанавливается через чашку со ртутью. Когда шкив быстро вращается, струя жидкости устремляется к колесу, тем самым устанавливая и разрывая контакт примерно 1,000 раз в секунду. Прибор работает тихо и, благодаря отсутствию окисляющихся частей, всегда остается чистым и в отличном состоянии. При этом, число прерываний в секунду может быть гораздо больше, давая токи, пригодные для беспроводной телеграфии и подобных целей.

Модифицированная форма осциллятора показана на Рис. 15 и 16, на первом из них фотографическое изображение, а на втором - схематическая иллюстрация, показывающая устройство внутренних частей контроллера. В данном случае, вал b, на котом крепится сосуд а, полый и поддерживает, в бесфрикционных подшипниках, шпиндель j, к которому крепится вес к. На изогнутом кронштейн е L, изолированном от последнего, но механически прикрепленному к нему, закреплено свободно вращающееся прерывающее колесо с выступами QQ. Колесо находится в электрическом контакте с внешней цепью через чашку со ртутью и изолированную втулку, крепящуюся со верхней стороны шкива. Благодаря наклонному положению мотора вес к удерживает прерывающее колесо в его положении за счет силы тяжести, и при вращении шкива цепь, в которую входят конденсатор и первичная катушка трансформатора, быстро замыкается и размыкается.

Рис. 17 показывает похожий прибор, в котором однако прерывающее устройство состоит из струи ртути, сталкивающейся с изолированным зубчатым колесом, держащемся на изолированном штифте в центре кожуха шкива, как показано. Соединение с цепью конденсатора идет через щетки, держащиеся на этом штифте.

Рис. 18 - фотография другого трансформатора с ртутным контроллером цепи колесного типа, в модифицированного некоторых отношениях, распространяться о которых надобности нет.

Это только лишь немногие из осцилляторных трансформаторов, которые я построил, и которые составляют только малую часть моих высокочастотных приборов, которым я надеюсь дать полное описание когда-нибудь в будущем, когда освобожусь от неотложной работы.

Из книги Откровения Николы Теслы автора Тесла Никола

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Эволюция физики автора Эйнштейн Альберт

Две электрические жидкости Последующие страницы содержат скучный отчет о некоторых очень простых экспериментах. Отчет будет скучным не только потому, что описание экспериментов неинтересно по сравнению с самим осуществлением их, но и потому, что самый смысл

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Глава седьмая Электрические опыты Наэлектризованный гребень Если вы еще даже ничего не знаете из науки об электричестве, не знакомы даже с первыми буквами ее азбуки, вы и в таком случае можете проделать ряд электрических опытов, любопытных и во всяком случае полезных

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Электрические опыты с газетой Гораздо более разнообразные опыты, чем с «кошачьим» электричеством, можно проделывать с электричеством «газетным», извлекаемым из газетного листа. В детстве меня забавлял ими старший брат; я поделюсь с читателем этими

Из книги Интерстеллар: наука за кадром автора Торн Кип Стивен

ВЫСОКОЧАСТОТНЫЕ ОСЦИЛЛЯТОРЫ ДЛЯ ЭЛЕКТРОТЕРАПИИ И ДРУГИХ ЦЕЛЕЙ* Заняться систематическими исследованиями феномена высокой частоты в 1889 году меня побудили некоторые теоретические возможности токов очень высокой частоты, случайные наблюдения во время проведения

Из книги автора

ЭЛЕКТРИЧЕСКИЕ ВОЗМОЖНОСТИ, СКРЫТЫЕ В УГЛЕ И ЖЕЛЕЗЕ Многие "вот-если-бы" исследователи, терпя неудачу в своих попытках, чувствовали досаду от того, что родились в то время, когда все уже создано и не осталось ничего, что нужно сделать. Это ложное ощущение, что по мере нашего

Из книги автора

ВОЕННЫЕ ЭЛЕКТРИЧЕСКИЕ ИЗОБРЕТЕНИЯ Нынешний международный конфликт - это мощный стимул к изобретению устройств и орудий войны. Скоро сделают электрическую пушку. Удивительно, что ее не сделали давным- давно. Дирижабли и аэропланы будут оборудоваться небольшими

Из книги автора

Магнитные, электрические и гравитационные поля Силовые линии магнитных полей играют большую роль во Вселенной и очень важны для понимания «Интерстеллар», поэтому стоит поговорить о них, прежде чем углубиться в научные аспекты фильма.Наверное, на уроках физики вам

", или попросу осциллятор колебаний Теслы.
Суть устройства - создать колебания, происходящие с настраиваемой частотой, которую можно настраивать на собственную частоту обьекта, например, конструкции здания.

Колебательный резонатор Теслы

Легенда о резонаторе Тесла

Суть легенды сводится к тому, что во врмя своих экспериментов в Нью-Йоркской лаборатории, Тела вызывал резонанс в металической балке. Небольшая балка быстро теряла энергию, и Тесла решил прикрепить прибор на балку здания собственной лаборатории. Первоначально никакой реакции не происходило, но вскоре колебания вошли в резонанс с собственной частотой здания. Колебания стали нарастать так быстро, что здание начало разрушаться. Тесле не оставалось ничего, кроме как разрушить осцилятор.

Отметим, что в 1908 году в Нью-Йорке действительно было зафиксировано землетрясение, но природа его считается естественной.

Предыстория

Исследования Теслы относительно резонанса начались еще во время работы на Эдисона. Никола Тесла исследовал как акустический, электрический, магнитный, так и механический резонанс. Первый электромагнитный резонатор был представлен Теслой на Всемирной выставке 1893 года под названием "Яйцо Колумбуса". Более того, Тесла дал лекцию о электромеханическом резонаторе, и даже представил чертежи своего устройства, которые вы найдете ниже.

При искре от разряда конденсатора, между местом ее появления и местом куда искра “ударяет” появляется очень высокое напряжение это результат образования кластеров, соединения в цепочки ионов водяного пара, в процессе принимают участи и электроны. Если в цепи с конденсатором находится последовательно или параллельно подсоединенная катушка индуктивности, тогда получается электрическая цепь, колебательный контур, в котором можно наблюдать колебательный процесс. В прежней статье я сделал простой расчет, и показал, что процесс разряда и заряда конденсатора не может быть убедительно объяснен движением электронов по проводу. Слишком велика тогда должна быть эта скорость, поскольку скорость движения электронов в проводе с напряжением никто не знает, разве что очень приближенно, приводимые в литературе сведения отличаются на порядок.

Интересны порой сведения, приводимые в старых книгах по электричеству, к примеру, в книге Эйхенвальда "Электричество”. В индукторе Румкорфа как обязательный элемент - применялся конденсатор, по утверждению автора книги – этот конденсатор используется для уменьшения искр в прерывателе, однако можно отметить, что исполнение устройства имеет общее с идеями Теслы, и конденсатор в момент образования размыкания и искры получается включенным последовательно с цепью первичной катушки. Ниже - рисунок из книги Эйхенвальда.

Попытаюсь кратко объяснить – почему возникновение высокой разности потенциалов при образовании искры можно использовать для извлечения энергии окружающей среды (из эфирной среды.). Если электроны и ионы соединяются своими разноименными магнитными полюсами в цепочки, в результате разворота в эфирной среде, кроме сил инерции могут испытывать некоторое сопротивление этой среды, что может привести в процессу излучения фотонов электронами и потерей электронами массы. Эту потерянную массу элементарный частицы должна восстановить, иначе частица буде находиться в нестабильном состоянии, а если процесс излучения и потери массы будет многократным, то частица может и вовсе исчезнуть. Вполне понятно, что вблизи частицы нет другого источника для получения недостающей энергии, кроме как из окружающей ее субстанции -эфира. Так работает осциллятор Тесла, как насос, отбирающий энергию из эфирной среды (в виде высокого потенциала, подаваемого далее в нагрузку). Сам процесс, судя по интервью Теслы своему адвокату позволял получать энергии в пять раз больше заявленной (затраченной для работы осциллятора). По словам Теслы и ученых того времени – это его изобретение – самое значимое из всех изобретением.

Таким образом, не выбрасывая сам процесс образования искры , можно получать энергию из окружающей среды, и такие попытки и успешные опыты были описаны Чернетским, физиком Мельниченко (конденсатор, последовательно соединенный и коллекторным двигателем), осуществлены архитектором Кананадзе. Дональдом Смитом, Эдвином Греем, конечно же –Теслой, и вероятно его учеником, родоначальником полупроводниковой электроники Генри Морем. Если мы выбросим искрообразование, так сразу же по словам Теслы - другое исполнение его прибора для преобразования разряда конденсатора - не будут иметь ничего общего с его идеей и реализацией. Получается, что при наличии высокого потенциала. При превышении предельного, минимального сопротивления цепь может замкнуться путем образовании кластеров, цепочек из ионов и электронов, что в свою очередь создаст еще более высокое напряжение на какое то время, и повторяя этот процесс многократно можно таким образом извлекать энергию из окружающей среды. Иногда говорят об отрицательное ветке в характеристике того или иного процесса, когда при увеличении нагрузки вместо ожидаемого общего потребления мощности, наоборот появляется ее снижение. Находится и немало фальсификаторов, пытающихся сознательно и не преднамеренно принизить, обесценить вклад, результаты, полученные Чернетским, Теслой и другими. К примеру делают макет “по типу” Чернетского, напрочь выбросив из него процесс образования дуги, или исследуют униполярное динамо Теслы, но на самом деле выбросив из него виток самовозбуждения показанные в патенте.

Конечно, одного процесса прерывания разряда недостаточно для извлечения энергии, да и разряды бывают разные. В электрической зажигалке для поджигания природного газа от 1.5 вольт и одного транзистора получают киловольты и искру. Но этот процесс не будет эквивалентен, разряду конденсатора в индуктивность. Для достижения успеха, бывает нужно частоту прерываний цепи согласовать, настроить с собственной резонансной частотой колебательного контура, а она может измениться, если в цепь включить изменяющуюся нагрузку. В книге Эйхенвальда приводится описание поющей дуги Дудделя.


Поэтому изобретатели находят решение в использовании нескольких катушек, используют явление связи между катушками.

Тесла использовал для прерывания разные конструкции, что отражено в его патентах. Использовалось прерывание дуги при помощи горячего воздуха, ее выталкивание и прерывание под воздействием магнита, и прерывание зубчатым колесом в резервуаре с маслом пат 514 168 (такое Тесла называл турбиной, хотя есть еще другой патент). Высокоэффективное использование прерывание дуги, разряда конденсатора через искровой промежуток, все это прослеживается в многих патентах Теслы. (пат 462418 Осциллятор Тесла, пат 454622 - Система электрического освещения. По сути, в современных “plazma ball” испоьзуется тот же заложенный Тесла принцип. На сохранившихся фото видно как Марк Твен держит в лаборатории Тесла светящуюся лампу, к которой идет только один провод. Имеется также фото, где Тесла держит в своей руке от. Тесла держит в светящуюся лампу в руке, и к которой не подсоединены провода, в этом случае свечение лампы производится за счет токов утечки от центрального электрода к периферии стеклянного корпуса лампы. Рука человека усиливает это процесс.

Далее - патент 447920 - Метод управления дуговыми лампами, пат 514 168 - Метод генерирования электрических токов, пат B 462418 и другие, к примеру - патент 577 671, где дается разъяснения как делать конденсаторы и катушки/).

Ниже фрагмент патента 514 168 .

Известный изобретатель Яблочков также работал в этом направлении, получил ряд патентов и сделал ряд высокоэффективных устройств для освещения.

Большинство сегодняшних изобретателей и последователей Теслы не верно понимают принцип самого Трансформатора Тесла.

Не может на обычных принципах индуктивной связи получаться столь высоким коэффициент трансформации в сотни раз отличающимся от соотношения количества витков первичной и вторичной обмоток.

Многие не учитывают, не говорят об интенсивном излучении фотонов трансформером Теслы, таково его верно название.

Вполне понятно, что именно излучение фотонов, попадающих на каждый виток вторичной обмотки трансформера Теслы и, вызывающее изменение ориентации электронов в каждом витке, и является основной причиной появления столь высокой разности потенциалов.

Многое после смерти Теслы искажено. К примеру, под турбиной Тесла подразумевал не устройство с вращающимся диском и патент с таим же названием. Это его трансформер, помешенный в масло

и выделяющий при работе газ, подаваемый далее на лопатки турбины. Пора для понимания нового переосмыслит выученное старое. Выбросить оттуда ложное. Новая теория великого Российского ученого, результаты, подтвержденные на практике давно уже не мешают изучить истинное положение в физике, понять, что нет вращения электрона по орбитам и орбиталям, в чем ошибки Бора, Максвелла. Герца, Фарадея и многое другое.!!

Mail: [email protected] (C марта 2010 ящик до 10 мб)

Новомодный феномен резонансного трансформатора Николы Тесла возник недавно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательных выступлений, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных цепей, первичной и вторичной, см. рис. 1а.

1. Первичная цепь, как генерирующая колебания определенной частоты, состоит из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Когда искровой промежуток находится в проводящем состоянии, LC–элементы связаны последовательно, формируя цепь определенной частоты.

2. Вторичной цепью является последовательный колебательный контур, который состоит из резонансной катушки индуктивности L2, открытой емкостью С, образованной заземлением и сферой, см. рис. 1а.

Частоты колебаний обоих цепей определены их структурными параметрами и должны совпадать. Выходное напряжение трансформатора Тесла исчисляется десятками тысяч вольт благодаря повышенному количеству витков во вторичной цепи. Вторичная цепь резонансного трансформатора Тесла, это открытый колебательный контур, который был открыт ранее Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора — равный ему так называемый ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

В 60-х годах 18-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину, где электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое Е-поле? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Только режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии.

Рассмотрим работу трансформатора Тесла, как последовательного колебательного контура:

Этот контур необходимо рассматривать как обычный LC–элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (?=0), если ХL = -Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Рассмотрим схему последовательного колебательного контура изображенную на рис. 3, где добротности контура Q может находиться в пределах 20-50 и много выше.

Здесь полоса пропускания определяется добротностью контура:

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

U2 = Q * U1

Напряжение U2 согласно расчетам составляет 2600В, что подтверждается практической работой трансформатора Тесла. В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Таблица 1

f (МГц) L (мкГн) ХL (Ом) C (пФ) −Xc (Ом) ?f (кГц) Q U1/U2 (В)
7 30,4 1360 17 1340 270 26 100/2600

Данное утверждение приемлемо в тех случаях, когда отсутствует изменение частоты или сопротивления нагрузки данного контура. В трансформаторе Н. Тесла оба фактора постоянны по определению.

Полоса пропускания трансформатора Тесла зависит от нагрузки, т.е., чем выше связь открытого конденсатора С (сфера-земля) со средой, тем больше нагружен контур, тем шире его полоса пропускания. Это связано с увеличением тока смещения. Тоже происходит с колебательным контуром, нагруженным активной нагрузкой. Таким образом, размеры сферы трансформатора определяет его емкость С и соответственно диктует не только ширину полосы пропускания, но и сопротивление излучения, которое в идеале должно равняться сопротивлению среды. Здесь нужно понимать, что чрезмерное увеличение полосы пропускания за счет увеличения объема излучателей приведет к снижению добротности и соответственно приведет к уменьшению эффективности резонансного трансформатора в целом.

Рассмотрим емкостной элемент трансформатора Тесла, как двухполюсный элемент связи со средой:

Вполне справедливо называть емкостной трансформатор Тесла, диполем Тесла, ведь «диполь» означает di(s) дважды + polos полюс, что исключительно применимо к двухполюсным конструкциям, каковым и является резонансный трансформатор Николы Тесла с емкостной двухполюсной нагрузкой (сфера+земля).

В рассматриваемом диполе, емкость излучателя является единственным элементом связи со средой. Излучатель антенны, это два электрода внедренные в среду, см. Рис. 4. и при появлении на них потенциала напряжения, оно автоматически прикладывается к среде, вызывая в ней некий потенциал –Q и +Q. Если это напряжение переменно, то и потенциалы меняют свой знак на противоположный с той же частотой, а в среде появляется ток смещения. Так как прикладываемые напряжение и ток синфазны по определению последовательного колебательного контура, то и электромагнитное поле в среде претерпевает те же изменения.

Вспомним, что в диполе Герца, где напряжение сначала прикладывается к длинному проводнику, то для волны в ближней зоне характерно, что Е=1, а Н?1. Это связано с тем, что в этом проводнике существуют реактивные LC элементы, которые вызывают задержку фазы поля Н, т.к. полотно антенны соизмеримо с?.

В диполе Тесла, где ХL = −Хс (реактивной составляющей нет), излучающий элемент длиной до 0,05 ? не резонансен и представляет лишь емкостную нагрузку. При толстом и коротком излучателе, его индуктивность практически отсутствует, она компенсируется сосредоточенной индуктивностью. Здесь напряжение прикладывается сразу к среде, где одновременно возникают поле Е и поле Н. Для волны диполя Тесла характерно, что Е=Н=1, т.е. волна в среде сформирована изначально. Здесь мы отождествляем напряжение в контуре с электрической составляющей поля Е (единица измерения В/м), а ток смещения с магнитной составляющей поля Н (единица измерения А/м), только диполь Тесла излучает синфазное поле Е и поле Н.

Попробуем еще раз рассмотреть данное утверждение немного в другой плоскости:

Допустим, мы имеем напряжение, приложенное к пластинам (реактивной составляющей нет, она скомпенсирована), которые нагружены на активное сопротивление среды Rср, как на участок электрической цепи (Рис. 4).

Вопрос: Имеется ли ток в среде (в цепи) именно в этот момент времени?

Ответ: Да, чем больше приложено напряжение к активному сопротивлению среды, тем больше ток смещения в этот же период времени, и это не противоречит закону Дж. К. Максвелла и если хотите закону Ома для участка цепи. По этому синфазное изменение величины напряжения и тока в последовательном контуре в режиме последовательного резонанса, вполне справедливо порождают синфазность полей Е и Н в среде, см. Рис. 4б.

Подводя итог, мы можем сказать, что емкостной излучатель создает вокруг себя мощное и концентрированное электромагнитное излучение. Диполь Тесла обладает особенностью накопления энергии, что характерно только последовательному LC-контуру, где суммарное выходное напряжение значительно превосходит входное, что наглядно видно по результатам таблицы. Данное свойство давно практикуют в промышленных радиоустройствах для повышения напряжения в устройствах с большим входным сопротивлением.

Таким образом, мы можем сделать следующий вывод:

Диполь Тесла — это высокодобротный последовательный колебательный контур, где сфера является открытым элементом, осуществляющим связь со средой. Индуктивность L является лишь закрытым элементом и резонансным трансформатором напряжения, не участвующим в излучении.

Внимательно изучив цели построения резонансного трансформатора Николы Тесла, невольно приходишь к выводу, что он был предназначен для передачи энергии на расстояние, но эксперимент был прерван, а потомкам остается догадываться о истинной цели этого чуда конца 19 и начала 20 века. Не случайно Никола Тесла в своих записях оставил следующее изречение: «Пусть будущее рассудит и оценит каждого по его трудам и достижениям. Настоящее принадлежит им, будущее, ради которого я работаю, принадлежит мне».

Краткая справка: Электромагнитная волна была открыта Максвеллом в 60-х годах 18 века при помощи емкостного излучателя. На рубеже 20-го века Н. Тесла доказал возможность передачи энергии на расстоянии при помощи емкостных излучателей резонансного трансформатора.

Г. Герц, продолжая опыты с электромагнитным полем и опираясь на теорию Максвелла в 1888 году доказал, что электромагнитное поле излучаемое емкостным излучателем равно полю излучаемое электрическим вибратором.

В настоящее время диполь Герца и магнитная рамка К. Брауна, открытая в 1916 году, широко используются на практике, а емкостной излучатель незаслуженно забыт. Уважая заслуги Максвелла и Тесла, автор данной статьи в память о них провел лабораторные эксперименты с емкостной антенной и принял решение обнародовать их. Эксперименты были проведены на частоте 7 МГц в домашних условиях и показали не плохие результаты.

ИТАК! Многочисленные эксперименты показали, что резонансные элементы любого контура можно изменять в разных пределах, и как с ними поступишь, так они и поведут себя. Интересно то, что если уменьшать излучающую емкость открытого контура, то для получения резонанса приходится увеличивать индуктивность. При этом на краях излучателя и других неровностях появляются стримеры (от англ. Streamer). Streamer — это тускло видимая ионизация воздуха (свечение ионов), создаваемая полем диполя. Это и есть резонансный трансформатор Тесла, каким мы его привыкли видеть на просторах Интернета.

Можно увеличить емкость и в режиме резонанса напряжений добиться максимальной отдачи сбалансированного электромагнитного поля и использовать изобретение Тесла, как диполь для передачи энергии на расстояния, т.е. как емкостную антенну. И все же, Тесла был прав, когда отказался от металлического сердечника внутри повышающей катушки, ведь он вносил потери в том месте, где зарождалась электромагнитная волна. Тем не менее, результаты экспериментов привели к единственно правильному условию, когда LC-параметры стали соответствовать табличным данным (табл. 1).

Проверка принципа действия диполя Тесла на практике

Для проведения экспериментов с трансформатором Тесла над конструкцией не пришлось долго думать, здесь помог радиолюбительский опыт. В качестве излучателей вместо сферы и земли были взяты две гофрированные алюминиевые (вентиляционные) трубы диаметром 120 мм и длиной по 250 мм. Удобство применения заключалось в том, что их можно растягивать или сжимать как витки катушки, тем самым, меняя емкость контура в целом и соответственно соотношение L/С. «Трубы–емкости» располагались горизонтально на бамбуковой палке с расстоянием 100 мм. Катушка индуктивности L2 (30 мкГн) проводом 2 мм, была вынесена ниже оси цилиндров на 50 см. с тем, чтобы не создавать вихревых токов в сфере излучателей. Еще лучше будет, если катушку вынести за один из излучателей, располагая ее на одной оси с ними, где эл. магнитное поле минимально и имеет форму «пустой воронки». Образованный, этими элементами колебательный контур был настроен в режиме последовательного резонанса, где было соблюдено основное правило, где ХL = -Хс. Катушка связи L1 (1 виток, 2 мм), обеспечивала связь с трансивером мощностью 40 Вт. При ее помощи было настроено согласование импровизированного диполя Тесла с фидером 50 Ом, что обеспечило режим бегущей волны и полную отдачу мощности без отражения обратно в генератор. Данный режим в трансформаторе Тесла обеспечивает разрядник. Фидер длиной 5 метров для чистоты эксперимента был обеспечен с обоих сторон ферритовыми фильтрами.

Для сравнения испытывалось три антенны:

  • диполь Тесла (L= 0.7м, КСВ=1,1),
  • разрезной укороченный диполь Герца (L = 2×0,7м, удлинительная катушка, фидер 5 метров защищенный ферритовыми фильтрами КСВ=1,0),
  • горизонтальный полуволновой диполь Герца (L = 19,3м, фидер защищен ферритовыми фильтрами КСВ=1,05).

На расстоянии 3 км. в черте города был включен передатчик с постоянной несущей сигнала.

Диполь Тесла (7 МГц) и укороченный диполь с удлиняющей катушкой, по очереди размещались возле кирпичного здания на расстоянии всего 2 метра, и на момент эксперимента находились в равных условиях на высоте (10-11 м).

В режиме приема диполь Тесла превосходил укороченный диполь Герца на 2-3 балла (12-20 дБ) по шкале S-метра трансивера и более.

Затем вывешивался заранее настроенный полуволновый диполь Герца. Высота подвеса 10-11 м. на расстоянии от стен в 15-20 м.

По усилению диполь Тесла уступал полуволновому диполю Герца примерно на 1 балл (6-8 дБ). Диаграммы направленности всех антенн совпадали. Стоит отметить, что полуволновый диполь был размещен не в идеальных условиях, а практика построения диполя Тесла требует новых навыков. Все антенны находились внутри двора (четыре здания) как в экранированном котле.

Общие выводы

Рассматриваемый диполь Тесла на практике работает почти как полноценный полуволновый диполь Герца, что подтверждает равенство электромагнитных полей от электрического и емкостного диполя. Он подчиняется принципам двойственности, что не идет в разрез с теорией антенн. Несмотря на свои малые размеры (0,015-0,025 ?), диполь Тесла осуществляет связь с пространством с помощью емкостных излучателей. Он создают в пространстве вокруг излучателя синфазное поле Е и поле Н, из чего следует, что поле диполя Тесла в пределах излучателей уже сформировано и имеет «мини-сферу», что приводит к ряду новых выводов о свойствах этого диполя. Таким образом, диполь Тесла имеет все основания для практических экспериментов в радиолюбительской службе в диапазонах коротких, средних и особенно длинных волн. Думаю, что любителям длинноволновой связи (137 кГц) стоит обратить на этот эксперимент особое внимание, где КПД рассматриваемого диполя в десятки раз выше экспериментальных антенн на основе укороченного диполя Герца или резонансных рамок.

Вспомним, где на практике применяется диполь Тесла? К сожалению, для гражданского контингента до некоторого времени он был закрыт. Молчание нарушил американский радиолюбитель Т. Хард, который в среде радиолюбителей представил миру радиолюбителей небезызвестную ЕН–антенну.

Справка

Такой тип антенн (см. Рис. 5) с середины 40-х годов с успехом практиковался в войсковой мобильной КВ радиосвязи многих стран, в том числе и СССР. Рабочий диапазон частот — 1,5-12 МГц. Непосредственным участником разработки этой антенны в армии США был Т. Хард. Он дал новую жизнь изобретению Н. Тесла, которую в среде DX-менов категорично отвергают. Их понять можно, ведь этот диполь нетрадиционен и похож на недоработанную модель автомобиля, а DX-менам нужно участвовать в «гонках» без риска. Не стоит скрывать, что есть и другие причины, — Т. Хард представил принцип действия ЕН-антенны в рамках нетрадиционной теории. Вместе с тем, большинству радиолюбителей-экспериментаторов данный тип антенн очень интересен, и его относят к числу экспериментальных и даже мобильных антенн. Что касается схожести запатентованных конструкций Н. Тесла и Т. Харда, то это вызывает лишь улыбку. Что ж, диполь Герца тоже имел своих последователей, это длинный ряд вибраторных антенн, таких как диполь Надененко, антенна Бевереджа, Уда-Яги и пр. Таким образом, каждый из нас вправе внести свою лепту в развитие емкостных антенн и оставить потомкам свое имя в антенной технике.

Современная ЕН-антенна Т. Харда и ее схожесть с диполем Тесла

Так что же представляет из себя ЕН-антенна Т. Харда? Это по сути та же антенна емкостного типа, один в один схожая с диполем Тесла, см. рис. 5а и 5б., разница заключается лишь в месте размещения катушки L2, и это справедливая заслуга Теда, ведь в точке создания электромагнитного поля среда должна быть свободна от вихревых полей создаваемых катушкой индуктивности.

Здесь вместо земли и сферы используется два цилиндра, которые и создают открытую емкость излучающего конденсатора.

Проводя равенство между диполем Тесла и ЕН-антенной Т. Харда, можно придти к следующему определению: ЕН-антенна — это высокодобротный последовательный колебательный контур, где емкость С является открытым элементом, который осуществляет связь со средой. Индуктивность L является закрытым резонансным элементом, он работает как компенсатор малой реактивной составляющей емкостного излучателя.

С этими антеннами можно ближе познакомиться на: http://ehant.narod.ru/book.htm .

Итак, мы пришли к выводу, что диполь Н. Тесла и ЕН-антенна Т. Харда — это совершенно одинаковые антенны, их отличают лишь конструктивные различия. Из теории последовательного колебательного контура мы видим, что в данной антенне должно соблюдаться условие последовательного резонанса. К сожалению, на практике трудно выполнить условия точного фазирования, хотя и возможно. Т. Хард об этом умолчал, но предусмотрел это и предложил несколько вариантов для фазировки антенны так называемой «входной катушкой». По сути это реактивный L–элемент, хотя в некоторых конструкциях используют и фазирующие LC–элементы на основе трансформатора Бушеро-Шери.

Краткое рассмотрение энергетики в пользу диполя Тесла

По утверждению приверженцев ЕН-антенн, синфазность излучения полей Е и Н имеет место и играет немалую роль в помехозащищенности.

Это справедливо, т.к. вектора Е и Н в силу своей синфазности складываются, а отношение сигнал к шуму возрастает в 1,4 раза или на 3 Дб уже в ближней зоне антенны, что не так уж и маловажно.

Если в некоторый момент времени зарядить конденсатор C до напряжения V 0 , то энергия, сосредоточенная в электрическом поле конденсатора, равна:

где:
С — ёмкость конденсатора.
Vo — максимальное значение напряжения.

Из приведенной формулы ясно, что напряжение среды Ес в данной антенне прямо пропорционально емкости открытого конденсатора умноженное на квадрат приложенного напряжения... И это напряжение вокруг излучателя антенны может составлять десятки и сотни киловольт, что немаловажно для рассматриваемого излучателя.

Рассматриваемый тип антенны является высокодобротным колебательным контуром, а добротность колебательных контуров значительно больше единицы, то напряжение, как на катушке индуктивности, так и на обкладках конденсатора превышают напряжение приложенное к цепи в Q раз. Не случайно явление резонанса напряжений используется в технике для усиления колебания напряжения, какой либо частоты.

Из теории антенн мы знаем, что для создания необходимого поля, нужны объем и добротность. Уменьшив размеры диполя Герца (Рис. 6а) до размеров рассматриваемых излучателей антенны, к примеру, в 10 раз, во столько же раз уменьшилось расстояние между обкладками конденсатора СС, и соответственно действующая высота h д. Объем ближнего поля Vo уменьшился в 1000 раз (рис. 6б).

Теперь придется включить «компенсирующую» катушку L с добротностью значительно более 1000 и настроить антенну в резонанс. Тогда из-за большой добротности напряжение на цилиндрах СС возрастет в 100 раз, а собственное поле Vo антенны между цилиндрами — в Q, т. е. в 1000 раз!

Таким образом мы имеем теоретическую вероятность того, что поле диполя Тесла равно полю диполя Герца. Что соответствует утверждению самого Г. Герца.

Тем не менее, все выглядит хорошо только в теории. Дело в том, что на практике высокой добротности катушки Q?1000 можно добиться только специальными мерами, да и то только в режиме приема. Следует также обратить особое внимание на повышенную концентрацию электромагнитной энергии в диполе Тесла (ЕН–антенне), которая расходуется на нагрев ближнего пространства и вызывает соответствующее падение КПД антенны в целом. Именно по этим причинам одиночный диполь Тесла при равных условиях подвеса имеет меньшее усиление, чем диполь Герца, хотя имеются и другие утверждения. Если диполь изготовить с немецкой педантичностью и американской уверенностью, может так оно и получится.

В связи с вышесказанным хочется отметить, что антенна Т. Харда — это не вымысел, это достаточно высоко отработанная модель, но которую еще можно и нужно усовершенствовать. Здесь, как говорится, «КОНЬ НЕ ВАЛЯЛСЯ». Пусть Тед не смог донести до нас истинной теории работы его индивидуальной разработки. В конце концов, это всего лишь Т. Хард с усовершенствованной конструкцией диполя Н. Тесла. Да это и не важно! Важно то, что есть возможности идти дальше по этому пути. Пусть следующая разработка антенны будет от Иванова, Сидорова или Петрова!

В тексте были использованы материалы экспериментов. К. Максвелла, работы Н. Тесла, интересные статьи профессора В. Т. Полякова, издания таких известных авторов, как Г. З. Айзенберг, К. Ротхаммель, З. Беньковский, Э. Липинский, материалы Интернет и разработки Т. Харда.

73! UA9LBG & Радио-Вектор-Тюмень
E-mail: [email protected] & [email protected]

© 2024 taxinnext.ru
Автомобильный портал - Taxinnext